846 resultados para Physicochemical measurement
Resumo:
A way of coupling digital image correlation (to measure displacement fields) and boundary element method (to compute displacements and tractions along a crack surface) is presented herein. It allows for the identification of Young`s modulus and fracture parameters associated with a cohesive model. This procedure is illustrated to analyze the latter for an ordinary concrete in a three-point bend test on a notched beam. In view of measurement uncertainties, the results are deemed trustworthy thanks to the fact that numerous measurement points are accessible and used as entries to the identification procedure. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Void fraction sensors are important instruments not only for monitoring two-phase flow, but for furnishing an important parameter for obtaining flow map pattern and two-phase flow heat transfer coefficient as well. This work presents the experimental results obtained with the analysis of two axially spaced multiple-electrode impedance sensors tested in an upward air-water two-phase flow in a vertical tube for void fraction measurements. An electronic circuit was developed for signal generation and post-treatment of each sensor signal. By phase shifting the electrodes supplying the signal, it was possible to establish a rotating electric field sweeping across the test section. The fundamental principle of using a multiple-electrode configuration is based on reducing signal sensitivity to the non-uniform cross-section void fraction distribution problem. Static calibration curves were obtained for both sensors, and dynamic signal analyses for bubbly, slug, and turbulent churn flows were carried out. Flow parameters such as Taylor bubble velocity and length were obtained by using cross-correlation techniques. As an application of the void fraction tested, vertical flow pattern identification could be established by using the probability density function technique for void fractions ranging from 0% to nearly 70%.
Resumo:
The elastic mechanical behavior of elastic materials is modeled by a pair of independent constants (Young`s modulus and Poisson`s coefficient). A precise measurement for both constants is necessary in some applications, such as the quality control of mechanical elements and standard materials used for the calibration of some equipment. Ultrasonic techniques have been used because wave velocity depends on the elastic properties of the propagation medium. The ultrasonic test shows better repeatability and accuracy than the tensile and indentation test. In this work, the theoretical and experimental aspects related to the ultrasonic through-transmission technique for the characterization of elastic solids is presented. Furthermore, an amorphous material and some polycrystalline materials were tested. Results have shown an excellent repeatability and numerical errors that are less than 3% in high-purity samples.
Resumo:
Real-time viscosity measurement remains a necessity for highly automated industry. To resolve this problem, many studies have been carried out using an ultrasonic shear wave reflectance method. This method is based on the determination of the complex reflection coefficient`s magnitude and phase at the solid-liquid interface. Although magnitude is a stable quantity and its measurement is relatively simple and precise, phase measurement is a difficult task because of strong temperature dependence. A simplified method that uses only the magnitude of the reflection coefficient and that is valid under the Newtonian regimen has been proposed by some authors, but the obtained viscosity values do not match conventional viscometry measurements. In this work, a mode conversion measurement cell was used to measure glycerin viscosity as a function of temperature (15 to 25 degrees C) and corn syrup-water mixtures as a function of concentration (70 to 100 wt% of corn syrup). Tests were carried out at 1 MHz. A novel signal processing technique that calculates the reflection coefficient magnitude in a frequency band, instead of a single frequency, was studied. The effects of the bandwidth on magnitude and viscosity were analyzed and the results were compared with the values predicted by the Newtonian liquid model. The frequency band technique improved the magnitude results. The obtained viscosity values came close to those measured by the rotational viscometer with percentage errors up to 14%, whereas errors up to 96% were found for the single frequency method.
Resumo:
This work presents the implementation of the ultrasonic shear reflectance method for viscosity measurement of Newtonian liquids using wave mode conversion from longitudinal to shear waves and vice versa. The method is based on the measurement of the complex reflection coefficient (magnitude and phase) at a solid-liquid interface. The implemented measurement cell is composed of an ultrasonic transducer, a water buffer, an aluminum prism, a PMMA buffer rod, and a sample chamber. Viscosity measurements were made in the range from 1 to 3.5 MHz for olive oil and for automotive oils (SAE 40, 90, and 250) at 15 and 22.5 degrees C, respectively. Moreover, olive oil and corn oil measurements were conducted in the range from 15 to 30 degrees C at 3.5 and 2.25 MHz, respectively. The ultrasonic measurements, in the case of the less viscous liquids, agree with the results provided by a rotational viscometer, showing Newtonian behavior. In the case of the more viscous liquids, a significant difference was obtained, showing a clear non-Newtonian behavior that cannot be described by the Kelvin-Voigt model.
Resumo:
Nanomaterials have triggered excitement in both fundamental science and technological applications in several fields However, the same characteristic high interface area that is responsible for their unique properties causes unconventional instability, often leading to local collapsing during application Thermodynamically, this can be attributed to an increased contribution of the interface to the free energy, activating phenomena such as sintering and grain growth The lack of reliable interface energy data has restricted the development of conceptual models to allow the control of nanoparticle stability on a thermodynamic basis. Here we introduce a novel and accessible methodology to measure interface energy of nanoparticles exploiting the heat released during sintering to establish a quantitative relation between the solid solid and solid vapor interface energies. We exploited this method in MgO and ZnO nanoparticles and determined that the ratio between the solid solid and solid vapor interface energy is 11 for MgO and 0.7 for ZnO. We then discuss that this ratio is responsible for a thermodynamic metastable state that may prevent collapsing of nanoparticles and, therefore, may be used as a tool to design long-term stable nanoparticles.
Resumo:
Aims: We aimed to evaluate if the co-localisation of calcium and necrosis in intravascular ultrasound virtual histology (IVUS-VH) is due to artefact, and whether this effect can be mathematically estimated. Methods and results: We hypothesised that, in case calcium induces an artefactual coding of necrosis, any addition in calcium content would generate an artificial increment in the necrotic tissue. Stent struts were used to simulate the ""added calcium"". The change in the amount and in the spatial localisation of necrotic tissue was evaluated before and after stenting (n=17 coronary lesions) by means of a especially developed imaging software. The area of ""calcium"" increased from a median of 0.04 mm(2) at baseline to 0.76 mm(2) after stenting (p<0.01). In parallel the median necrotic content increased from 0.19 mm(2) to 0.59 mm(2) (p<0.01). The ""added"" calcium strongly predicted a proportional increase in necrosis-coded tissue in the areas surrounding the calcium-like spots (model R(2)=0.70; p<0.001). Conclusions: Artificial addition of calcium-like elements to the atherosclerotic plaque led to an increase in necrotic tissue in virtual histology that is probably artefactual. The overestimation of necrotic tissue by calcium strictly followed a linear pattern, indicating that it may be amenable to mathematical correction.
Resumo:
The water diffusion attributable to concentration gradients is among the main mechanisms of water transport into the asphalt mixture. The transport of small molecules through polymeric materials is a very complex process, and no single model provides a complete explanation because of the small molecule`s complex internal structure. The objective of this study was to experimentally determine the diffusion of water in different fine aggregate mixtures (FAM) using simple gravimetric sorption measurements. For the purposes of measuring the diffusivity of water, FAMs were regarded as a representative homogenous volume of the hot-mix asphalt (HMA). Fick`s second law is generally used to model diffusion driven by concentration gradients in different materials. The concept of the dual mode diffusion was investigated for FAM cylindrical samples. Although FAM samples have three components (asphalt binder, aggregates, and air voids), the dual mode was an attempt to represent the diffusion process by only two stages that occur simultaneously: (1) the water molecules are completely mobile, and (2) the water molecules are partially mobile. The combination of three asphalt binders and two aggregates selected from the Strategic Highway Research Program`s (SHRP) Materials Reference Library (MRL) were evaluated at room temperature [23.9 degrees C (75 degrees F)] and at 37.8 degrees C (100 degrees F). The results show that moisture uptake and diffusivity of water through FAM is dependent on the type of aggregate and asphalt binder. At room temperature, the rank order of diffusivity and moisture uptake for the three binders was the same regardless of the type of aggregate. However, this rank order changed at higher temperatures, suggesting that at elevated temperatures different binders may be undergoing a different level of change in the free volume. DOI: 10.1061/(ASCE)MT.1943-5533.0000190. (C) 2011 American Society of Civil Engineers.
Resumo:
Bee pollen has been used for many years in both traditional medicine and supplementary nutrition, as well as in alternative diets, mainly due to its nutritional properties and health benefits. Bee pollen production is a recent activity in Brazil, having begun in the late 1980s. However, the country has the potential of being a large world producer of high quality pollen, particularly because of the great diversity of tropical flora and the resistance of the Brazilian Apis mellifera bee races. Thirty-six samples of bee pollen from the Southern region of Brazil were analyzed regarding pollen types and physicochemical and nutritional composition. Only one sample was considered monofloral, which was exclusively composed by pollen from the Asteraceae family). The State of Parana showed a greater variety of pollen types, 18 in total, representing 82% of the total number identified in this study. The bee pollen in the States of Rio Grande do Sul and Parana showed a higher number of samples with humidity content above the standard permitted by the Brazilian legislation, i.e. over 4%. The bee pollen was characterized by its high protein content with average values of 20.47%. The analysis regarding humidity, lipids and sugar showed no statistical differences among the samples (p<0.05). The pollen samples had a high concentration of reducible sugars (48%). The predominant minerals in the samples PR, SC and RS were phosphorus (7102.29, 6873.40, 6661.73 mg/kg of pollen), followed by potassium (5383.73, 4997.77, 4773.26 mg/kg of pollen), calcium (1179.05, 961.93, 848.36 mg/kg of pollen) and magnesium (818.02, 679.01, 725.89 mg/kg of pollen). Statistical analysis (Tukey test) demonstrated no significant difference between the contents of calcium, copper, iron, phosphorus and sodium in the pollen samples of the South of Brazil. However, the samples from the State of Parana contained the highest contents of potassium and differed statistically from the samples of the State of Rio Grande do Sul.
Resumo:
The aim of this study was to evaluate the production and the structural and physicochemical properties of RS obtained by molecular mass reduction (enzyme or acid) and hydrothermal treatment of chickpea starch. Native and gelatinized starch were submitted to acid (2 M HCl for 2.5 h) or enzymatic hydrolysis (pullulanase, 40 U/g per 10 h), autoclaved (121 degrees C/30 min), stored under refrigeration (4 degrees C/24 h), and lyophilized. The hydrolysis of starch increased the RS content from 16% to values between 20 and 32%, and the enzymatic treatment of the gelatinized starch was the most efficient. RS showed an increase in water absorption and water solubility indexes due to hydrolytic and thermal process. The processes for obtaining RS changed the crystallinity pattern from C to B. Hydrolysis treatments caused an increase in relative crystallinity due to the greater retrogradation caused by the reduction in MW. RS obtained from hydrolysis showed a reduction in viscosity, indicating the rupture of molecules. The viscosity seemed to be inversely proportional to the RS content in the sample.
Resumo:
The objective of this study was to develop a dessert that contains soy protein (SP) (1%, 2%, 3%) and guava juice (GJ) (22%, 27%, 32%) using Response Surface Methodology (RSM) as the optimisation technique. Water activity, physical stability, colour, acidity, pH, iron, and carotenoid contents were analysed. Affective tests were performed to determine the degree of liking of colour, creaminess, and acceptability. The results showed that GJ increased the values of redness, hue angle, chromaticity, acidity, and carotenoid content, while SP reduced water activity. Optimisation suggested a dessert containing 32% GJ and 1.17% SP as the best proportion of these components. This sample was considered a source of fibres, ascorbic acid, copper, and iron and garnered scores above the level of `slightly liked` for sensory attributes. Moreover, RSM was shown to be an adequate approach for modelling the physicochemical parameters and the degree of liking of creaminess of desserts. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Focusing on the therapeutic and cosmetic potentials of the thermal water, several processes were developed to achieve a raw material known as fango which presents in its constitution water, clay and organic soil. This research work aimed at characterizing turf, sulphur mud and fango from Araxa, MG, Brazil, through physical, physicochemical, inorganic and organic assessments for cosmetic and topical product proposes. The characterization permitted the determination of relevant parameters to suggest the efficacy (presence, of ions) and safety (absence of toxic metals) of those raw materials for cosmetic and pharmaceutical utilization.
Resumo:
Chemical interesterification is an important technological option for the production of fats targeting commercial applications. Fat blends, formulated by binary blends of palm stearin and palm olein in different ratios, were subjected to chemical interesterification. The following determinations, before and after the interesterification reactions, were done: fatty acid composition, softening point, melting point, solid fat content and consistency. For the analytical responses a multiple regression statistical model was applied. This study has shown that blending and chemical interesterifications are an effective way to modify the physical and chemical properties of palm stearin, palm olein and their blends. The mixture and chemical interesterification allowed obtaining fats with various degrees of plasticity, increasing the possibilities for the commercial use of palm stearin and palm olein. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Blends of canola oil (CO) and fully hydrogenated cottonseed oil (FHCSO), with 20, 25, 30, 35 and 40% FHCSO (w/w) were interesterified under the following conditions: 0.4% sodium methoxide, 500 rpm stirring, 100C, 20 min. The original and interesterified blends were examined for triacylglycerol composition, melting point, solid fat content (SFC) and consistency. Interesterification caused considerable rearrangement of triacylglycerol species, reduction of trisaturated triacylglycerol content and increase in disaturated-monounsaturated and monosaturated-diunsaturated triacylglycerols in all blends, resulting in lowering of respective melting points. The interesterified blends showed reduced SFC at all temperatures and more linear melting profiles if compared with the original blends. Consistency, expressed as yield value, significantly decreased after the reaction. Iso-solid curves indicated eutectic interactions for the original blends, which were eliminated after randomization. The 80:20, 75:25, 70:30 and 65:35 (w/w) CO: FHCSO interesterified blends showed characteristics which are appropriate for their application as soft margarines, spreads, fat for bakery/all-purpose shortenings, and icing shortenings, respectively. PRACTICAL APPLICATIONS Recently, a number of studies have suggested a direct relationship between trans isomers and increased risk of vascular disease. In response, many health organizations have recommended reducing consumption of foods containing trans fatty acids. In this connection, chemical interesterification has proven the main alternative for obtaining plastic fats that have low trans isomer content or are even trans isomer free. This work proposes to evaluate the chemical interesterification of binary blends of canola oil and fully hydrogenated cottonseed oil and the specific potential application of these interesterified blends in food products.
Resumo:
This study determined the inter-tester and intra-tester reliability of physiotherapists measuring functional motor ability of traumatic brain injury clients using the Clinical Outcomes Variable Scale (COVS). To test inter-tester reliability, 14 physiotherapists scored the ability of 16 videotaped patients to execute the items that comprise the COVS. Intra-tester reliability was determined by four physiotherapists repeating their assessments after one week, and three months later. The intra-class correlation coefficients (ICC) were very high for both inter-tester reliability (ICC > 0.97 for total COVS scores, ICC > 0.93 for individual COVS items) and intra-tester reliability (ICC > 0.97). This study demonstrates that physiotherapists are reliable in the administration of the COVS.