124 resultados para Phosphine.
Resumo:
One of the loci responsible for strong phosphine resistance encodes dihydrolipoamide dehydrogenase (DLD). The strong co-incidence of enzyme complexes that contain DLD, and enzymes that require thiamine as a cofactor, motivated us to test whether the thiamine deficiency of polished white rice could influence the efficacy of phosphine fumigation against insect pests of stored grain. Three strains of Sitophilus oryzae (susceptible, weak and strong resistance) were cultured on white rice (thiamine deficient), brown rice or whole wheat. As thiamine is an essential nutrient, we firstly evaluated the effect of white rice on developmental rate and fecundity and found that both were detrimentally affected by this diet. The mean time to reach adult stage for the three strains ranged from 40 to 43 days on brown rice and 50–52 days on white rice. The mean number of offspring for the three strains ranged from 7.7 to 10.3 per female over a three day period on brown rice and 2.1 to 2.6 on white rice. Growth and reproduction on wheat was similar to that on brown rice except that the strongly resistant strain showed a tendency toward reduced fecundity on wheat. The susceptible strain exhibited a modest increase in tolerance to phosphine on white rice as expected if thiamine deficiency could mimic the effect of the dld resistance mutation at the rph2 locus. The strongly resistant strain did not respond to thiamine deficiency, but this was expected as these insects are already strongly resistant. We failed, however, to observe the expected synergistic increase in resistance due to combining thiamine deficiency with the weakly resistant strain. The lack of interaction between thiamine content of the diet and the resistance genotype in determining the phosphine resistance phenotype suggests that the mode of inhibition of the complexes is a critical determinant of resistance.
Resumo:
The substitution reactions of SMe2 by phosphines (PMePh2, PEtPh2, PPh3, P(4-MeC6H4)(3), P(3-MeC6H4)(3), PCy3) on Pt-IV complexes having a cyclometalated imine ligand, two methyl groups in a cis-geometrical arrangement, a halogen, and a dimethyl sulfide as ligands, [Pt(CN)(CH3)(2)(X)(SMe2)], have been studied as a function of temperature, solvent, and electronic and steric characteristics of the phosphines and the X and CN ligands. In all cases, a limiting dissociative mechanism has been found, where the dissociation of the SMe2 ligand corresponds to the rate-determining step. The pentacoordinated species formed behaves as a true pentacoordinated Pt-IV compound in a steady-state concentration, given the solvent independence of the rate constant. The X-ray crystal structures of two of the dimethyl sulfide complexes and a derivative of the pentacoordinate intermediate have been determined. Differences in the individual rate constants for the entrance of the phosphine ligand can only be estimated as reactivity ratios. In all cases an effect of the phosphine size is detected, indicating that an associative step takes place from the pentacoordinated intermediate. The nature of the (CN) imine and X ligands produces differences in the dimethyl sulfide dissociation reactions rates, which can be quantified by the corresponding DeltaS double dagger values (72, 64, 48, 31, and 78 J K-1 mol(-1) for CN/X being C6H4CHNCH2C6H5/Br, C6H4CHNCH2-(2,4,6-(CH3)(3))C6H2/Br, C6H4CHNCH2C6H5/Cl, C6Cl4CHNCH2C6H5/Cl, and C6W4CH2NCHC6H5/ Pr, respectively). As a whole, the donor character of the coordinated C-aromatic and X atoms have the greatest influence on the dissociativeness of the rate-determining step.
Resumo:
The vacuum gamma -radiolysis of two fluorinated polyimides containing phenylphosphine oxide units, TOR-RC and TOR-RC ODPA, have been studied at 77 K and 300 K. The phenyl phosphine oxide units provide protection of the polymers towards oxidation by oxygen atoms and the bulky fluoromethyl groups reduce the colouration of the polymers by limiting donor-acceptor complex formation through the aromatic units. At 77 K the radicals formed were identified to be a mixture of neutral radicals (60%) and anion radicals. At 300 K only neutral radicals were found. The G-values for radical formation were found to be 0.50 and 0.42 at 77 K and 0.051 and 0.052 at 300 K for TOR-RC and TOR-RC ODPA, respectively. Little change was observed in the visible spectra of the polyimides following vacuum radiolysis at 300 K up to a dose of 3.3 MGy, and the polymers were shown to undergo net cross linking with a gel dose of 0.45 MGy.
Resumo:
Existing procedures for the generation of polymorphic DNA markers are not optimal for insect studies in which the organisms are often tiny and background molecular Information is often non-existent. We have used a new high throughput DNA marker generation protocol called randomly amplified DNA fingerprints (RAF) to analyse the genetic variability In three separate strains of the stored grain pest, Rhyzopertha dominica. This protocol is quick, robust and reliable even though it requires minimal sample preparation, minute amounts of DNA and no prior molecular analysis of the organism. Arbitrarily selected oligonucleotide primers routinely produced similar to 50 scoreable polymorphic DNA markers, between individuals of three Independent field isolates of R. dominica. Multivariate cluster analysis using forty-nine arbitrarily selected polymorphisms generated from a single primer reliably separated individuals into three clades corresponding to their geographical origin. The resulting clades were quite distinct, with an average genetic difference of 37.5 +/- 6.0% between clades and of 21.0 +/- 7.1% between individuals within clades. As a prelude to future gene mapping efforts, we have also assessed the performance of RAF under conditions commonly used in gene mapping. In this analysis, fingerprints from pooled DNA samples accurately and reproducibly reflected RAF profiles obtained from Individual DNA samples that had been combined to create the bulked samples.
Resumo:
Five new silver(I) complexes of formulas [Ag(Tpms)] (1), [Ag(Tpms)-(PPh3)] (2), [Ag(Tpms)(PCy3)] (3), [Ag(PTA)][BF4] (4), and [Ag(Tpms)(PTA)] (5) {Tpms = tris(pyrazol-1-yl)methanesulfonate, PPh3 = triphenylphosphane, PCy3 = tricyclohexylphosphane, PTA = 1,3,5-triaza-7-phosphaadamantane) have been synthesized and fully characterized by elemental analyses, H-1, C-13, and P-31 NMR, electrospray ionization mass spectrometry (ESI-MS), and IR spectroscopic techniques. The single crystal X-ray diffraction study of 3 shows the Tpms ligand acting in the N-3-facially coordinating mode, while in 2 and 5 a N2O-coordination is found, with the SO3 group bonded to silver and a pendant free pyrazolyl ring. Features of the tilting in the coordinated pyrazolyl rings in these cases suggest that this inequivalence is related with the cone angles of the phosphanes. A detailed study of antimycobacterial and antiproliferative properties of all compounds has been carried out. They were screened for their in vitro antimicrobial activities against the standard strains Enterococcus faecalis (ATCC 29922), Staphylococcus aureus (ATCC 25923), Streptococcus pneumoniae (ATCC 49619), Streptococcus pyogenes (SF37), Streptococcus sanguinis (SK36), Streptococcus mutans (UA1S9), Escherichia coli (ATCC 25922), and the fungus Candida albicans (ATCC 24443). Complexes 1-5 have been found to display effective antimicrobial activity against the series of bacteria and fungi, and some of them are potential candidates for antiseptic or disinfectant drugs. Interaction of Ag complexes with deoxyribonucleic acid (DNA) has been studied by fluorescence spectroscopic techniques, using ethidium bromide (EB) as a fluorescence probe of DNA. The decrease in the fluorescence of DNA EB system on addition of Ag complexes shows that the fluorescence quenching of DNA EB complex occurs and compound 3 is particularly active. Complexes 1-5 exhibit pronounced antiproliferative activity against human malignant melanoma (A375) with an activity often higher than that of AgNO3, which has been used as a control, following the same order of activity inhibition on DNA, i.e., 3 > 2 > 1 > 5 > AgNO3 >> 4.
Resumo:
This work describes the synthesis and characterization of a series of new α-diimine and P,O, β-keto and acetamide phosphines ligands, and their complexation to Ni(II), Co(II),Co(III) and Pd(II) to obtain a series of new compounds aiming to study their structural characteristics and to test their catalytic activity. All the compounds synthesized were characterized by the usual spectroscopic and spectrometric techniques: Elemental Analysis, MALDI-TOF-MS spectrometry, IR, UV-vis, 1H, 13C and 31P NMR spectroscopies. Some of the paramagnetic compounds were also characterized by EPR. For the majority of the compounds it was possible to solve their solid state structure by single crystal X-ray diffraction. Tests for olefin polymerization were performed in order to determine the catalytic activity of the Co(II) complexes. Chapter I presents a brief introduction to homogenous catalysis, highlighting the reactions catalyzed by the type of compounds described in this thesis, namely olefin polymerization and oligomerization and reactions catalyzed by the complexes bearing α-diimines and P,O type ligands. Chapter II is dedicated to the description of the synthesis of new α-diimines cobalt (II) complexes, of general formula [CoX2(α-diimine)], where X = Cl or I and the α-diimines are bis(aryl)acenaphthenequinonediimine) (Ar-BIAN) and 1,4-diaryl-2,3-dimethyl-1,4-diaza-1,3-butadiene (Ar-DAB). Structures solved by single crystal X-ray diffraction were obtained for all the described complexes. For some of the compounds, X-band EPR measurements were performed on polycrystalline samples, showing a high-spin Co(II) (S = 3/2) ion, in a distorted axial environment. EPR single crystal experiments on two of the compounds allowed us to determine the g tensor orientation in the molecular structure. In Chapter III we continue with the synthesis and characterization of more cobalt (II)complexes bearing α-diimines of general formula [CoX2(α-diimine)], with X = Cl or I and α-diimines are bis(aryl)acenaphthenequinonediimine) (Ar-BIAN) and 1,4-diaryl-2,3-dimethyl- 1,4-diaza-1,3-butadiene (Ar-DAB). The structures of three of the new compounds synthesized were determined by single crystal X-ray diffraction. A NMR paramagnetic characterization of all the compounds described is presented. Ethylene polymerization tests were done to determine the catalytic activity of several of the Co(II) complexes described in Chapter II and III and their results are shown. In Chapter IV a new rigid bidentate ligand, bis(1-naphthylimino)acenaphthene, and its complexes with Zn(II) and Pd(II), were synthesized. Both the ligand and its complexes show syn and anti isomers. Structures of the ligand and the anti isomer of the Pd(II) complex were solved by single crystal X-ray diffraction. All the compounds were characterized by elemental analysis, MALDI-TOF-MS spectrometry, and by IR, UV-vis, 1H, 13C, 1H-1H COSY, 1H-13C HSQC, 1H-13C HSQC-TOCSY and 1H-1H NOESY NMR when necessary. DFT studies showed that both conformers of [PdCl2(BIAN)] are isoenergetics and can be obtain experimentally. However, we can predict that the isomerization process is not available in square-planar complex, but is possible for the free ligand. The molecular geometry is very similar in both isomers, and only different orientations for naphthyl groups can be expected. Chapter V describes the synthesis of new P, O type ligands, β-keto phosphine, R2PCH2C(O)Ph, and acetamide phosphine R2PNHC(O)Me, as well as a series of new cobalt(III) complexes namely [(η5-C5H5)CoI2{Ph2PCH2C(O)Ph}], and [(η5- C5H5)CoI2{Ph2PNHC(O)Me}]. Treating these Co(III) compounds with an excess of Et3N, resulted in complexes η2-phosphinoenolate [(η5-C5H5)CoI{Ph2PCH…C(…O)Ph}] and η2- acetamide phosphine [(η5-C5H5)CoI{Ph2PN…C(…O)Me}]. Nickel (II) complexes were also obtained: cis-[Ni(Ph2PN…C(…O)Me)2] and cis-[Ni((i-Pr)2PN…C(…O)Me)2]. Their geometry and isomerism were discussed. Seven structures of the compounds described in this chapter were determined by single crystal X-ray diffraction. The general conclusions of this work can be found in Chapter VI.
Resumo:
Silicon, shallow junction, rapid thermal doping, vapour phase doping, atomic-layer doping, phosphorus diffusion, phosphine adsorption, sheet resistance, four-point probe, native oxidation
Resumo:
Hydrogenated amorphous and nanocrystalline silicon, deposited by catalytic chemical vapour deposition, have been doped during deposition by the addition of diborane and phosphine in the feed gas, with concentrations in the region of 1%. The crystalline fraction, dopant concentration and electrical properties of the films are studied. The nanocrystalline films exhibited a high doping efficiency, both for n and p doping, and electrical characteristics similar to those of plasma-deposited films. The doping efficiency of n-type amorphous silicon is similar to that obtained for plasma-deposited electronic-grade amorphous silicon, whereas p-type layers show a doping efficiency of one order of magnitude lower. A higher deposition temperature of 450°C was required to achieve p-type films with electrical characteristics similar to those of plasma-deposited films.
Resumo:
In this paper we present new results on doped μc-Si:H thin films deposited by hot-wire chemical vapour deposition (HWCVD) in the very low temperature range (125-275°C). The doped layers were obtained by the addition of diborane or phosphine in the gas phase during deposition. The incorporation of boron and phosphorus in the films and their influence on the crystalline fraction are studied by secondary ion mass spectrometry and Raman spectroscopy, respectively. Good electrical transport properties were obtained in this deposition regime, with best dark conductivities of 2.6 and 9.8 S cm -1 for the p- and n-doped films, respectively. The effect of the hydrogen dilution and the layer thickness on the electrical properties are also studied. Some technological conclusions referred to cross contamination could be deduced from the nominally undoped samples obtained in the same chamber after p- and n-type heavily doped layers.
Resumo:
Four new metal complexes {M = Pd(II) or Pt(II)} containing the ligand 9-aminoacridine (9AA) were prepared. The compounds were characterized by FT-IR and 1H, 13C, and 195Pt NMR spectroscopies. Crystal structure of the palladium complex of formulae [Pd(9AA)(μ-Cl)]2 · 2DMF was determined by X-ray diffraction. Two 9-acridine molecules in the imine form bind symmetrically to the metal ions in a bidentate fashion through the imine nitrogen atom and the C(1) atom of the aminoacridine closing a new five-membered ring. By reaction with phosphine or pyridine, the Cl bridges broke and compounds with general formulae [Pd(9AA)Cl(L)] (where L = PPh3 or py) were formed. A mononuclear complex of platinum of formulae [Pt(9AA)Cl(DMSO)] was also obtained by direct reaction of 9-aminoacridine and the complex [PtCl2(DMSO)2]. The capacity of the compounds to modify the secondary and tertiary structures of DNA was evaluated by means of circular dichroism and electrophoretic mobility. Both palladium and platinum compounds proved active in the modification of both the secondary and tertiary DNA structures. AFM images showed noticeable modifications of the morphology of the plasmid pBR322 DNA by the compounds probably due to the intercalation of the complexes between base pairs of the DNA molecule. Finally, the palladium complex was tested for antiproliferative activity against three different human tumor cell lines. The results suggest that the palladium complex of formula [Pd(9AA)(μ-Cl)]2 has significant antiproliferative activity, although it is less active than cisplatin.
Resumo:
Four new metal complexes {M = Pd(II) or Pt(II)} containing the ligand 9-aminoacridine (9AA) were prepared. The compounds were characterized by FT-IR and 1H, 13C, and 195Pt NMR spectroscopies. Crystal structure of the palladium complex of formulae [Pd(9AA)(μ-Cl)]2 · 2DMF was determined by X-ray diffraction. Two 9-acridine molecules in the imine form bind symmetrically to the metal ions in a bidentate fashion through the imine nitrogen atom and the C(1) atom of the aminoacridine closing a new five-membered ring. By reaction with phosphine or pyridine, the Cl bridges broke and compounds with general formulae [Pd(9AA)Cl(L)] (where L = PPh3 or py) were formed. A mononuclear complex of platinum of formulae [Pt(9AA)Cl(DMSO)] was also obtained by direct reaction of 9-aminoacridine and the complex [PtCl2(DMSO)2]. The capacity of the compounds to modify the secondary and tertiary structures of DNA was evaluated by means of circular dichroism and electrophoretic mobility. Both palladium and platinum compounds proved active in the modification of both the secondary and tertiary DNA structures. AFM images showed noticeable modifications of the morphology of the plasmid pBR322 DNA by the compounds probably due to the intercalation of the complexes between base pairs of the DNA molecule. Finally, the palladium complex was tested for antiproliferative activity against three different human tumor cell lines. The results suggest that the palladium complex of formula [Pd(9AA)(μ-Cl)]2 has significant antiproliferative activity, although it is less active than cisplatin.
Resumo:
Four new metal complexes {M = Pd(II) or Pt(II)} containing the ligand 9-aminoacridine (9AA) were prepared. The compounds were characterized by FT-IR and 1H, 13C, and 195Pt NMR spectroscopies. Crystal structure of the palladium complex of formulae [Pd(9AA)(μ-Cl)]2 · 2DMF was determined by X-ray diffraction. Two 9-acridine molecules in the imine form bind symmetrically to the metal ions in a bidentate fashion through the imine nitrogen atom and the C(1) atom of the aminoacridine closing a new five-membered ring. By reaction with phosphine or pyridine, the Cl bridges broke and compounds with general formulae [Pd(9AA)Cl(L)] (where L = PPh3 or py) were formed. A mononuclear complex of platinum of formulae [Pt(9AA)Cl(DMSO)] was also obtained by direct reaction of 9-aminoacridine and the complex [PtCl2(DMSO)2]. The capacity of the compounds to modify the secondary and tertiary structures of DNA was evaluated by means of circular dichroism and electrophoretic mobility. Both palladium and platinum compounds proved active in the modification of both the secondary and tertiary DNA structures. AFM images showed noticeable modifications of the morphology of the plasmid pBR322 DNA by the compounds probably due to the intercalation of the complexes between base pairs of the DNA molecule. Finally, the palladium complex was tested for antiproliferative activity against three different human tumor cell lines. The results suggest that the palladium complex of formula [Pd(9AA)(μ-Cl)]2 has significant antiproliferative activity, although it is less active than cisplatin.
Resumo:
In this contribution a few new gold(I)phosphine complexes, [2-(PPh2)C6H4CO 2H]AuX (where X = Cl, SCN, Br3) and a similar gold(III) derivative [{2-(PPh2)C6H4CO 2H}AuIII Cl (C6H4CH2NMe2 )]Cl have been synthesised and characterised. The phosphine, 2-(diphenylphosphino)benzoic acid, has been employed for the first time in gold chemistry. This ligand is potentially bidentate through bonding of the phosphine and carboxylate groups. The X-ray structure of the complex chloro[2-(diphenylphosphino) benzoic acid]gold(I) has been elucidated and the bond lengths encountered show great similarity to those of chloro(triphenylphosphine)gold(I). [2-(PPh2)C6H4CO 2H]AuCl crystallises in the space group P2(1)/c with a = 9.113(2) Å, b = 10.925(2) Å, c = 23.069(4) Å, beta = 99.95º(3), V = 2299 ų, Z = 4 and R = 0.091. Biological tests for anti-fungal and anti-bacterial activity demostrate that [2-(PPh2)C6H4CO 2H]AuCl exhibits broad spectrum activity against a range of organisms.
Resumo:
Fast atom bombardment mass spectroscopy has been used to study a large number of cationic phosphine-containing transition-metal-gold clusters, which ranged in mass from 1000 to 4000. Many of these clusters have been previously characterized and were examined in order to test the usefulness of the FABMS technique. Results showed that FABMS is excellent in giving the correct molecular formula and when combined with NMR, IR, and microanalysis gave a reliable characterization for cationic clusters¹. Recently FABMS has become one of the techniques employed as routine in cluster characterization2,3 and also is an effective tool for the structure analysis of large biomolecules4. Some results in the present work reinforce the importance of these data in the characterization of clusters in the absence of crystals with quality for X-ray analysis.
Resumo:
This work presents a density functional theory study of the norbornene ROMP metathesis reactions. The energies have been calculated in a Grubbs catalyst model Cl2(PH3)2Ru=CH2. The geometries and energy profile are similar to the Grubbs metilydene (Cl2(PCy3)2Ru=CH2 real model. It was found that the metathesis reaction proceeds via associative mechanism (catalyst-norbonene) followed by dissociative substitution of a phosphine ligand with norbonene, giving a monophosphine complex. The results are in reasonable agreement with the available experimental data. The dissociation energy of the phosphines is predicted to be 23.2 kcal mol-1.