969 resultados para Phenol hydroxylation
Resumo:
Phenol- and catechol-adapted sludges contained large numbers of the yeasts, Candida tropicalis and Trichosporon cutaneum. Both were able to grow on a variety of aromatic compounds and utilized phenol and catechol at a high rate. This property was inducible. The feasibility of using these yeasts for removing phenols from waste waters is suggested.
Resumo:
The mechanism of hydroxylation reactions catalyzed by m-hydroxybenzoate-4-hydroxylase and anthranilate hydroxylase from Aspergillus niger was investigated using superoxide dismutase from ovine erythrocytes. Inclusion of superoxide dismutase in the assay mixtures of the two enzymes resulted in complete inhibition of the hydroxylation reaction, indicating the possible involvement of superoxide anions (O2−) in these reactions.
Resumo:
Hydroxylation of aromatic compounds was observed in NADH-phenazine methosulfate-O2 model system known to generate superoxide anions (Image ). Addition of superoxide dismutase prepared from ovine erythrocytes to this hydroxylating system resulted in complete inhibition, suggesting an involvement of Image in aromatic hydroxylations.
Resumo:
Base metal (Cr, Mn, Fe, Ni, Cu) substituted CeVO4 compounds were synthesized by the solution combustion technique. These compounds were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, UV-vis spectroscopy, transmission electron microscopy and BET surface area analyzer. The characterization indicated that the base metals were substituted in the ionic state in all the compounds. These compounds were used for the photocatalytic degradation of phenol and the degradation rates obtained in the presence of these compounds werecompared against that obtained with the commercial Degussa P-25 TiO2 catalyst. Fe and Cr substituted CeVO4 showed photocatalytic activity that was comparable with that of Degussa P-25 TiO2. The concentration of toxic intermediates was high when the reaction was carried out in presence of Degussa P-25 TiO2 but it was found to be insignificant when the reaction was carried out in presence of base metal-substituted CeVO4. The effect of % Fe-substitution (varied from 1 to 5 at%) in CeVO4 on the photocatalytic activity was also investigated and it was observed that 1 at% Fe-substituted compound showed the highest activity. A mathematical model describing the kinetics of the photocatalytic degradation of phenol was developed on the basis of the catalyst structure and taking into account the formation of all the possible intermediates. The variation of the concentration of phenol and the intermediates was described by the model and the reaction rateconstants were determined. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The selective hydroxylation of proline residues in nascent procollagen chains by prolyl hydroxylase (EC 1.14.11.2) can be understood in terms of the conformational feature of the -Pro-Gly-segments in linear peptides and globular proteins. The folded beta-turn conformation in such segments appears to be the conformational requirement for proline hydroxylation. The available data on the hydroxylation of native and synthetic substrates of prolyl hydroxylase are explained on the basis of the extent of beta-turn formation in them. Taken in conjunction with the conformational features of the hydroxyproline residue, our results bring out the conformational reason for the posttranslational proline hydroxylation which, it is proposed, leads to the "straightening" of the beta-turn segments into the linear triple-helical conformation.
Resumo:
Aspergillus niger was shown to carry out the regiospecific hydroxylation of acyclic monoterpene alcohols.
Resumo:
Incubation of acetates of geraniol, citronellol and linalool with Aspergillus niger resulted in their hydrolysis to corresponding alcohols which were further hydroxylated to their respective 8-hydroxy derivatives. In the case of linalyl acetate, besides linalool and 8-hydroxylinalool, small amounts of geraniol and agr-terpineol were also formed. Microsomes (105 000xg sediment) prepared from induced cells of A. niger were found to convert (1-3H)citronellol to 8-hydroxy citronellol in the presence of NADPH and O2. The pH optimum for the hydroxylase was found to be 7.6.
Resumo:
Cell-free extracts with high 14?-hydroxylase activity were prepared from induced vegetative cell cultures of Mucor piriformis by grinding in potassium phosphate buffer (0.05 M, pH 8.0) containing glucose (0.25 M), KCl (1 mM), glutathione (1.0 mM) and glycerol (10%). Although the ideal pH for preparing the cell-free extract from vegetative cells was 8.0, the pH optimum of the hydroxylase was found to be 7.6. Microsomes (2.0 mg) prepared from the crude cell-free extract hydroxylated progesterone to 14?-hydroxyprogesterone in not, vert, similar60% yields in 30 min in the presence of NADPH and O2. Microsomes prepared from the uninduced cells did not contain any 14?-hydroxylase activity. The hydroxylase activity was inhibited to a significant extent by CO and p-chloromercuribenzoate whereas moderate inhibition was noticed in the presence of SKF-525A, metyrapone and N-methylmaleimideindicating the possible involvement of the cytochromeP-450 system in the reaction. The membrane bound hydroxylase was solubilized using Triton X-100 and the solubilized fraction contained nearly 35% of the original hydroxylase activity.
Resumo:
Nanometre-sized powders of SrTiO3 were prepared at 70-100 degrees C by the wet-chemical method of gel to crystallite (G-C) conversion. The crystallite sizes obtained were in the range 5-13 nm, as estimated by transmission electron microscopy (TEM) studies. The photocatalytic activities of these powders in the mineralization of phenol were evaluated in comparison with Degussa P25 (TiO2). The maximum photocatalytic activity was observed for powders annealed in the range 1100-1300 degrees C. The optical spectra of the particle suspensions in water showed broadened absorption around the band gap region, together with the appearance of an absorption maximum in the UV region. The effect of inorganic oxidizing species as electron scavengers on the rate of the photocatalytic degradation of phenol was studied. The influence of bulk and surface defects, which participate in the charge transfer process during photocatalysis, was investigated systematically.