997 resultados para Petrology.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Between 1086.6 and 1229.4 m below seafloor at Site 642 on the Outer Vøring Plateau, a series of intermediate volcanic extrusive flow units and volcaniclastic sediments was sampled. A mixed sequence of dacitic subaerial flows, andesitic basalts, intermediate volcaniclastics, subordinate mid-ocean ridge basalt, (MORB) lithologies, and intrusives was recovered, in sharp contrast to the more uniform tholeiitic T-type MORB units of the overlying upper series. This lower series of volcanics is composed of three chemically distinct groups, (B, A2, A1), rather than the two previously identified. Flows of the dacitic group (B) have trace-element and initial Sr isotope signatures which indicate that their source magma derived from the partial melting of a component of continental material in a magma chamber at a relatively high level in the crust. The relative proportions of crustal components in this complex melt are not known precisely. The most basic group (A2) probably represents a mixture of this material with MORB-type tholeiitic melt. A third group (A1), of which there was only one representative flow recovered, is chemically intermediate between the two groups above, and may suggest a repetition of, or a transition phase in, the mixing processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sixty-five chert, porcellanite, and siliceous-chalk samples from Deep Sea Drilling Project Leg 62 were analyzed by petrography, scanning electron microscopy, analysis by energy-dispersive X-rays, X-ray diffraction, X-ray spectroscopy, and semiquantitative emission spectroscopy. Siliceous rocks occur mainly in chalks, but also in pelagic clay and marlstone at Site 464. Overall, chert probably constitutes less than 5% of the sections and occurs in deposits of Eocene to Barremian ages at sub-bottom depths of 10 to 820 meters. Chert nodules and beds are commonly rimmed by quartz porcellanite; opal-CT-rich rocks are minor in Leg 62 sediments 65 to 108 m.y. old and at sub-bottom depths of 65 to 520 meters. Chert ranges from white to black, shades of gray and brown being most common; yellow-brown and red-brown jaspers occur at Site 464. Seventy-eight percent of the studied cherts contain easily recognizable burrow structures. The youngest chert at Site 463 is a quartz cast of a burrow. Burrow silica maturation is always one step ahead of host-rock silicification. Burrows are commonly loci for initial silicification of the host carbonate. Silicification takes place by volume-f or-volume replacement of carbonate sediment, and more-clay-rich sediment at Site 464. Nannofossils are commonly pseudomorphically replaced by quartz near the edges of chert beds and nodules. Other microfossils, mostly radiolarians and foraminifers, whether in chalk or chert, can be either filled with or replaced by calcite, opal-CT, and (or) quartz. Chemical micro-environments ultimately control the removal, transport, and precipitation of calcite and silica. Two cherts from Site 465 contain sulfate minerals replaced by quartz. Site 465 was never subaerially exposed after sedimentation began, and the formation of the sulfate minerals and their subsequent replacement probably occurred in the marine environment. Several other cherts with odd textures are described in this paper, including (1) a chert breccia cemented by colloform opal-CT and chalcedony, (2) a transition zone between white porcellanite containing opal-CT and quartz and a burrowed brown chert, consisting of radial aggregates of opal-CT with hollow centers, and (3) a chert that consists of silica-replaced calcite pseudospherules interspersed with streaks and circular masses of dense quartz. X-ray-diffraction analyses show that when data from all sites are considered there are poorly defined trends indicating that older cherts have better quartz crystallinity than younger ones, and that opal-CT crystallite size increases and opal-CT cf-spacings decrease with depth of occurrence in the sections. In a general way, depth of burial and the presence of calcite promote the ordering in the opal-CT crystal structure which allows its eventual conversion to quartz. Opal-CT in porcellanites converts to quartz after reaching a minimum d-spacing of 4.07 Å. Quartz/opal-CT ratios and quartz crystallinity vary randomly on a fine scale across four chert beds, but quartz crystallinity increases from the edge to the center of a fifth chert bed; this may indicate maturation of the silica. Twenty-four rocks were analyzed for their major- and minor-element compositions. Many elements in cherts are closely related to major mineral components. The carbonate component is distinguished by high values of CaO, MgO, Mn, Ba, Sr, and (for unknown reasons) Zr. Tuffaceous cherts have high values of K and Al, and commonly Zn, Mo, and Cr. Pure cherts are characterized by high SiO2 and B. High B may be a good indicator of formation of chert in an open marine environment, isolated from volcanic and terrigenous materials.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Major oxide and trace element determinations of the composition basalts from the bottom of Hole 487, together with microprobe analyses of their minerals (olivine, magnesiochromite, salite, and plagioclase), prove that they are depleted oceanic tholeiites.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We detail the petrography and mineralogy of 145 basaltic rocks from the top, middle, and base of flow units identified on shipboard along with associated pyroclastic samples. Our account includes representative electron microprobe analyses of primary and secondary minerals; 28 whole-rock major-oxide analyses; 135 whole-rock analyses each for 21 trace elements; 7 whole-rock rare-earth analyses; and 77 whole-rock X-ray-diffraction analyses. These data show generally similar petrography, mineralogy, and chemistry for the basalts from all four sites; they are typically subalkaline and consanguineous with limited evolution along the tholeiite trend. Limited fractionation is indicated by immobile trace elements; some xenocrystic incorporation from more basic material also occurred. Secondary alteration products indicate early subaerial weathering followed by prolonged interaction with seawater, most likely below 150°C at Holes 552, 553A, and 554A. At Hole 555, greenschist alteration affected the deepest rocks (olivine-dolerite) penetrated, at 250-300°C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A high-MgO andesite which is texturally similar to boninite and a variolitic basalt collected from Site 458, about 100 km west of the Mariana Trench, have been studied through microprobe analyses and melting experiments at high water pressures. The boninite-type andesite is very similar in composition and texture to a boninite from Bonin Islands, except that the former is more calcic than the latter. The variolitic basalt contains magnesian pigeonite (Ca12Mg74Fe14) in cores of augite microphenocrysts. This pigeonite crystallized at temperatures above 1200°C. In the melting experiments of the boninite-type rock, clinopyroxene crystallizes as a liquidus phase at pressures at least above 8 kbar. No olivine crystallizes near the liquidus temperatures, indicating that the magma of this rock cannot be in equilibrium with the upper mantle periodotite (lherzolite) at depths at least greater than 25 km. The boninite-type rock is probably a product of fractional crystallization of a more primitive magma (e.g., olivine-bearing boninite magma) by separation of olivine and orthopyroxene. The magma of the variolitic basalt also cannot be in equilibrium with the upper mantle peridotite, and may be a product of fractional crystallization of a more primitive basaltic magma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The relatively fresh basement basaltic rocks cored at Sites 794 and 797 during ODP Legs 127 and 128 show compositional variations suggesting the following: (1) the aphyric rocks might be differentiated from compositional equivalents of the aphyric sample with the lowest FeO*/MgO (Sample 127-797C-12R-4, 35-37 cm); and (2) the plagioclase-phyric rocks (i.e., another constituent of the basement basaltic rocks from the sites) may be derivatives from the same parents; in this case, however, crystallized plagioclase was not effectively removed. Melting experiments were conducted for Sample 127-797C-12R-4, 35-37 cm, and the differentiation processes for the basement basaltic rocks were assessed. The high-pressure melting-phase relation can not account for the compositional variation of the aphyric rocks, suggesting that the variation was developed at relatively low pressure where olivine and plagioclase fractionation was followed by Ca-rich clinopyroxene fractionation. The density of Sample 127-797C-12R-4,35-37 cm, is comparable to that of plagioclase at some depth, but at still relatively low pressure, making it possible that the liquidus plagioclase was retained in the successive liquids to produce the plagioclase-phyric rocks. According to backtrack calculation assuming the olivine maximum fractionation, Sample 127-797C-12R-4, 35-37 cm, was differentiated from primary picritic high-Al basalt magma. The estimated primary magma composition was experimentally proved to coexist with harzburgite mantle at about 14 kbar, suggesting relatively shallow production (approximately 40-50 km below surface) of the rifting-related primary magma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Portneuf-Mauricie Domain (PMD), located in the south-central part of the Grenville Province, comprises several mafic and ultramafic intrusions hosting Ni-Cu ± platinum-group element (PGE) prospects and a former small mining operation (Lac Édouard mine). These meter- to kilometer-scale, sulfide-bearing intrusions display diverse forms, such as layered and tabular bodies with no particular internal structure, and zoned plutons. They were injected ~ 1.40 Ga into a mature oceanic arc, before and during accretion of the arc to the Laurentian margin. The pressure-temperature conditions of the magmas at the beginning of their emplacement were 3 kbar and 1319-1200 °C (according to the petrologic modeling results from this study). The PMD mineralized intrusions are interpreted to represent former magma chambers or magma conduits in the roots of the oceanic arc. The parent magmas of the mineralized intrusions resulted mainly from the partial melting of a mantle source composed of spinel-bearing lherzolite. Petrologic modeling and the occurrence of primary amphibole in the plutonic rocks indicate that these parent melts were basaltic and hydrous. In addition, fractional crystallization modeling and Mg/Fe ratios suggest that most of the intrusions may have formed from evolved magmas, with Mg# = 60, resulting from the fractionation of more primitive magmas (primary magmas, with Mg# = 68). Petrologic modeling demonstrates that 30% fractional crystallization resulted in the primitive to evolved characteristics of the studied intrusive rocks (as indicated by the crystallization sequences and mineral chemistry). Exceptions are the Réservoir Blanc, Boivin, and Rochette West parent magmas, which may have undergone more extensive fractional crystallization, since these intrusions contain pyroxenes that are more iron rich and have lower Mg numbers than pyroxenes in the other PMD intrusions. The PMD mafic and ultramafic intrusions were intruded into an island arc located offshore from the Laurentian continent. Thus, their presence confirms the existence of a well-developed magmatic network (responsible of the fractionation processes) beneath the Proterozoic arc, which resulted in the wide range of compositions observed in the various plutons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ice-rafting evidence for a '1500-year cycle' sparked considerable debate on millennial-scale climate change and the role of solar variability. Here, we reinterpret the last 70,000 years of the subpolar North Atlantic record, focusing on classic DSDP Site 609, in the context of newly available raw data, the latest radiocarbon calibration (Marine09) and ice core chronology (GICC05), and a wider range of statistical methodologies. A ~1500-year oscillation is primarily limited to the short glacial Stage 4, the age of which is derived solely from an ice flow model (ss09sea), subject to uncertainty, and offset most from the original chronology. Results from the most well-dated, younger interval suggest that the original 1500 ± 500 year cycle may actually be an admixture of the ~1000 and ~2000 cycles that are observed within the Holocene at multiple locations. In Holocene sections these variations are coherent with 14C and 10Be estimates of solar variability. Our new results suggest that the '1500-year cycle' may be a transient phenomenon whose origin could be due, for example, to ice sheet boundary conditions for the interval in which it is observed. We therefore question whether it is necessary to invoke such exotic explanations as heterodyne frequencies or combination tones to explain a phenomenon of such fleeting occurrence that is potentially an artifact of arithmetic averaging.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Petrologic descriptions will follow a division related to both grain size and lithology like that adopted in Cape Roberts investigation (Cape Roberts Science Team 2000, hdl:10013/epic.28287.d001, and references therein). First, we describe the petrology of the sand fraction of the core. Second, we report the distribution of clasts with diameter larger than 2 millimeter (mm) and the petrology of basement clasts. Third, we focus on the occurrence and petrology of McMurdo Volcanic Group sediments, which represent the largest component in the core. The final section continues with the compositional characterization of bulk sediments by continuous X-ray fluorescence measurement (XRF scan) integrated by carbonate geochemistry and concludes with the porewater geochemistry. All of these data will contribute to infer palaeoclimatic information and to understand provenance history of detritus, changes in depositional environment, and spatial and temporal evolution of magmatism in McMurdo Ice Shelf area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Petrography and isotope geochemical characteristics of H, O, S, Sr, and Nd have been described for basalts recovered from Hole 504B during Leg 111 of the Ocean Drilling Program. The petrographic and chemical features of the recovered basalts are similar to those obtained previously (DSDP Legs 69, 70, and 83); they can be divided into phyric (plagioclase-rich) and aphyric (Plagioclase- and clinopyroxene-rich) basalts and show low abundances of TiO2, Na2O, K2O, and Sr. This indicates that the basalts belong to Group D, comprising the majority of the upper section of the Hole 504B. The diopside-rich nature of the clinopyroxene phenocrysts and Ca-rich nature of the Plagioclase phenocrysts are also consistent with the preceding statement. The Sr and Nd isotope systematics (average 87Sr/86Sr = 0.70267 ± 0.00007 and average 143Nd/144Nd = 0.513157 ± 0.000041) indicate that the magma sources are isotopically heterogeneous, although the analyzed samples represent only the lowermost 200-m section of Hole 504B. The rocks were subjected to moderate hydrothermal alteration throughout the section recovered during Leg 111. Alteration is limited to interstices, microfractures, and grain boundaries of the primary minerals, forming chlorite, actinolite, talc, smectite, quartz, sphene, and pyrite. In harmony with the moderate alteration, the following alteration-sensitive parameters show rather limited ranges of variation: H2O = 1.1 ±0.2 wt%, dD = - 38 per mil ± 4 per mil, d180 = 5.4 per mil ± 0.3 per mil, total S = 562 ± 181 ppm, and d34S = 0.8 per mil ± 0.3 per mil. Based on these data, it was estimated that the hydrothermal fluids had dD and d180 values only slightly higher than those of seawater, the water/rock ratios were as low as 0.02-0.2, and the temperature of alteration was 300°-400°C. Sulfur exists predominantly as pyrite and in minor quantities as chalcopyrite. No primary monosulfide was detected. This and the d34S values of pyrite (d34S = 0.8 per mil) suggest that primary pyrrhotite was almost completely oxidized to pyrite by reaction with hydrothermal fluids containing very little sulfate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Strata that record the evolutionary history of the North American continental margin in a region that serves as the basin margin interface between allochthonous sedimentation from the continent and pelagic sedimentation from the oceanic realm were recovered at Deep Sea Drilling Project Site 603, on the lower continental rise. The lowermost unit recovered at this site is composed of upper Berriasian-Aptian interbedded laminated limestone and bioturbated limestone with sandstone to claystone turbidites. This unit can be correlated with the Blake-Bahama Formation in the western North Atlantic. Studies of the laminated and bioturbated limestones were used to determine the depositional environment. Geochemical and petrographic studies suggest that the laminated limestones were deposited from the suspended particulate loads of the nepheloid layer associated with weak bottom-current activity as well as moderate to poorly oxygenated bottom-water conditions. Fragments of macrofossils are also found in the Blake-Bahama Formation drilled at Site 603. Twelve specimens and their host sediment were analyzed for their carbon and oxygen isotopic composition. The macrofossil samples chosen for analysis consist of nine samples of Inoceramus, two ammonite aptychi, and one belemnite sample. Depletion in 18O is observed in recrystallized specimens. The ammonite aptychi have been diagenetically altered and/or exhibit evidence of isotopic fractionation by the organism. Oxygen isotope paleotemperatures obtained from five well-preserved specimens - four of Inoceramus and one of a belemnite - suggest that bottom-water temperatures in the North Atlantic Basin during the Early Cretaceous were very warm, at least 11°C.