814 resultados para Performance comparison
Resumo:
The main purpose of this work is to describe the case of an online Java Programming course for engineering students to learn computer programming and to practice other non-technicalabilities: online training, self-assessment, teamwork and use of foreign languages. It is important that students develop confidence and competence in these skills, which will be required later in their professional tasks and/or in other engineering courses (life-long learning). Furthermore, this paper presents the pedagogical methodology, the results drawn from this experience and an objective performance comparison with another conventional (face-to-face) Java course.
Resumo:
Feature extraction and selection are critical processes in developing facial expression recognition (FER) systems. While many algorithms have been proposed for these processes, direct comparison between texture, geometry and their fusion, as well as between multiple selection algorithms has not been found for spontaneous FER. This paper addresses this issue by proposing a unified framework for a comparative study on the widely used texture (LBP, Gabor and SIFT) and geometric (FAP) features, using Adaboost, mRMR and SVM feature selection algorithms. Our experiments on the Feedtum and NVIE databases demonstrate the benefits of fusing geometric and texture features, where SIFT+FAP shows the best performance, while mRMR outperforms Adaboost and SVM. In terms of computational time, LBP and Gabor perform better than SIFT. The optimal combination of SIFT+FAP+mRMR also exhibits a state-of-the-art performance.
Resumo:
This paper introduces a high-speed, 100Hz, visionbased state estimator that is suitable for quadrotor control in close quarters manoeuvring applications. We describe the hardware and algorithms for estimating the state of the quadrotor. Experimental results for position, velocity and yaw angle estimators are presented and compared with motion capture data. Quantitative performance comparison with state-of-the-art achievements are also presented.
Resumo:
This paper introduces an improved line tracker using IMU and vision data for visual servoing tasks. We utilize an Image Jacobian which describes motion of a line feature to corresponding camera movements. These camera motions are estimated using an IMU. We demonstrate impacts of the proposed method in challenging environments: maximum angular rate ~160 0/s, acceleration ~6m /s2 and in cluttered outdoor scenes. Simulation and quantitative tracking performance comparison with the Visual Servoing Platform (ViSP) are also presented.
Resumo:
Recently Convolutional Neural Networks (CNNs) have been shown to achieve state-of-the-art performance on various classification tasks. In this paper, we present for the first time a place recognition technique based on CNN models, by combining the powerful features learnt by CNNs with a spatial and sequential filter. Applying the system to a 70 km benchmark place recognition dataset we achieve a 75% increase in recall at 100% precision, significantly outperforming all previous state of the art techniques. We also conduct a comprehensive performance comparison of the utility of features from all 21 layers for place recognition, both for the benchmark dataset and for a second dataset with more significant viewpoint changes.
Resumo:
A method for determination of tricyclazole in water using solid phase extraction and high performance liquid chromatography (HPLC) with UV detection at 230nm and a mobile phase of acetonitrile:water (20:80, v/v) was developed. A performance comparison between two types of solid phase sorbents, the C18 sorbent of Supelclean ENVI-18 cartridge and the styrene-divinyl benzene copolymer sorbent of Sep-Pak PS2-Plus cartridge was conducted. The Sep-Pak PS2-Plus cartridges were found more suitable for extracting tricyclazole from water samples than the Supelclean ENVI-18 cartridges. For this cartridge, both methanol and ethyl acetate produced good results. The method was validated with good linearity and with a limit of detection of 0.008gL-1 for a 500-fold concentration through the SPE procedure. The recoveries of the method were stable at 80% and the precision was from 1.1-6.0% within the range of fortified concentrations. The validated method was also applied to measure the concentrations of tricyclazole in real paddy water.
Resumo:
The excellent metal support interaction between palladium (Pd) and titanium nitride (TiN) is exploited in designing an efficient anode material. Pd-TN, that could be useful for direct ethanol fuel cell in alkaline media. The physicochemical and electrochemical characterization of the Pd-TiN/electrolyte interface reveals an efficient oxidation of ethanol coupled with excellent stability of the catalyst under electrochemical conditions. Characterization of the interface using in situ Fourier transform infrared spectroscopy (in situ FITR) shows the production CO2 at low overvoltages revealing an efficient cleaving of the C-C bond. The performance comparison of Pd supported on TiN (Pd-TiN) with that supported on carbon (Pd-C) clearly demonstrates the advantages of TiN support over carbon. A positive chemical shift of Pd (3d) binding energy confirms the existence of metal support interaction between pd and TiN, which in turn helps weaken the Pd-CO synergetic bonding interaction. The remarkable ability of TiN to accumulate -OH species on its surface coupled with the strong adhesion of Pd makes TiN an active support material for electrocatalysts.
Resumo:
We provide a comparative performance evaluation of packet queuing and link admission strategies for low-speed wide area network Links (e.g. 9600 bps, 64 kbps) that interconnect relatively highspeed, connectionless local area networks (e.g. 10 Mbps). In particular, we are concerned with the problem of providing differential quality of service to interLAN remote terminal and file transfer sessions, and throughput fairness between interLAN file transfer sessions. We use analytical and simulation models to study a variety of strategies. Our work also serves to address the performance comparison of connectionless vs. connection-oriented interconnection of CLNS LANS. When provision of priority at the physical transmission level is not feasible, we show, for low-speed WAN links (e.g. 9600 bps), the superiority of connection-oriented interconnection of connectionless LANs, with segregation of traffic streams with different QoS requirements into different window flow controlled connections. Such an implementation can easily be obtained by transporting IP packets over an X.25 WAN. For 64 kbps WAN links, there is a drop in file transfer throughputs, owing to connection overheads, but the other advantages are retained, The same solution also helps to provide throughput fairness between interLAN file transfer sessions. We also provide a corroboration of some of our modelling results with results from an experimental test-bed.
Resumo:
A novel comparator architecture is proposed for speed operation in low voltage environment. Performance comparison with a conventional regenerative comparator shows a speed-up of 41%. The proposed comparator is embedded in a continuous time sigma-delta ADC so as to reduce the quantizer delay and hence minimizes the excess loop delay problem. A performance enhancement of 1dB in the dynamic range of the ADC is achieved with this new comparator. We have implemented this ADC in a standard single-poly 8-Metal 0.13 mum UMC process. The entire system operates at 1.2 V supply providing a dynamic range of 32 dB consuming 720 muW of power and occupies an area of 0.1 mm2.
Resumo:
Accurate estimation of mass transport parameters is necessary for overall design and evaluation processes of the waste disposal facilities. The mass transport parameters, such as effective diffusion coefficient, retardation factor and diffusion accessible porosity, are estimated from observed diffusion data by inverse analysis. Recently, particle swarm optimization (PSO) algorithm has been used to develop inverse model for estimating these parameters that alleviated existing limitations in the inverse analysis. However, PSO solver yields different solutions in successive runs because of the stochastic nature of the algorithm and also because of the presence of multiple optimum solutions. Thus the estimated mean solution from independent runs is significantly different from the best solution. In this paper, two variants of the PSO algorithms are proposed to improve the performance of the inverse analysis. The proposed algorithms use perturbation equation for the gbest particle to gain information around gbest region on the search space and catfish particles in alternative iterations to improve exploration capabilities. Performance comparison of developed solvers on synthetic test data for two different diffusion problems reveals that one of the proposed solvers, CPPSO, significantly improves overall performance with improved best, worst and mean fitness values. The developed solver is further used to estimate transport parameters from 12 sets of experimentally observed diffusion data obtained from three diffusion problems and compared with published values from the literature. The proposed solver is quick, simple and robust on different diffusion problems. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents hierarchical clustering algorithms for land cover mapping problem using multi-spectral satellite images. In unsupervised techniques, the automatic generation of number of clusters and its centers for a huge database is not exploited to their full potential. Hence, a hierarchical clustering algorithm that uses splitting and merging techniques is proposed. Initially, the splitting method is used to search for the best possible number of clusters and its centers using Mean Shift Clustering (MSC), Niche Particle Swarm Optimization (NPSO) and Glowworm Swarm Optimization (GSO). Using these clusters and its centers, the merging method is used to group the data points based on a parametric method (k-means algorithm). A performance comparison of the proposed hierarchical clustering algorithms (MSC, NPSO and GSO) is presented using two typical multi-spectral satellite images - Landsat 7 thematic mapper and QuickBird. From the results obtained, we conclude that the proposed GSO based hierarchical clustering algorithm is more accurate and robust.
Resumo:
A thermoacoustic refrigerator driven by a thermoacoustic primemover is an effective way to produce durable and long lasting refrigeration due to high reliability, no exotic materials, and no moving parts. Resonator geometry is also one of the important factors that influence the performance of a thermoacoustic prime mover, namely, frequency. Computational fluid dynamics simulation of performance comparison of thermoacoustic prime mover with a straight and tapered resonator is chosen for the present study under an identical stack condition with the air as a working fluid. The frequency and pressure amplitude of oscillations obtained from simulation results were found to be more in the tapered resonator than the straight resonator. Apart from computational fluid dynamics simulation, the simulation studies have also been conducted using design environment for low-amplitude thermoacoustic energy conversion, which predicts the performance of thermoacoustic primemover comparatively well. Simulation results from computational fluid dynamics and design environment for low-amplitude thermoacoustic energy conversion were compared and found to be matching well, representing the good validity of computational fluid dynamics modeling.
Resumo:
The presence of a large number of spectral bands in the hyperspectral images increases the capability to distinguish between various physical structures. However, they suffer from the high dimensionality of the data. Hence, the processing of hyperspectral images is applied in two stages: dimensionality reduction and unsupervised classification techniques. The high dimensionality of the data has been reduced with the help of Principal Component Analysis (PCA). The selected dimensions are classified using Niche Hierarchical Artificial Immune System (NHAIS). The NHAIS combines the splitting method to search for the optimal cluster centers using niching procedure and the merging method is used to group the data points based on majority voting. Results are presented for two hyperspectral images namely EO-1 Hyperion image and Indian pines image. A performance comparison of this proposed hierarchical clustering algorithm with the earlier three unsupervised algorithms is presented. From the results obtained, we deduce that the NHAIS is efficient.
Resumo:
Flood is one of the detrimental hydro-meteorological threats to mankind. This compels very efficient flood assessment models. In this paper, we propose remote sensing based flood assessment using Synthetic Aperture Radar (SAR) image because of its imperviousness to unfavourable weather conditions. However, they suffer from the speckle noise. Hence, the processing of SAR image is applied in two stages: speckle removal filters and image segmentation methods for flood mapping. The speckle noise has been reduced with the help of Lee, Frost and Gamma MAP filters. A performance comparison of these speckle removal filters is presented. From the results obtained, we deduce that the Gamma MAP is reliable. The selected Gamma MAP filtered image is segmented using Gray Level Co-occurrence Matrix (GLCM) and Mean Shift Segmentation (MSS). The GLCM is a texture analysis method that separates the image pixels into water and non-water groups based on their spectral feature whereas MSS is a gradient ascent method, here segmentation is carried out using spectral and spatial information. As test case, Kosi river flood is considered in our study. From the segmentation result of both these methods are comprehensively analysed and concluded that the MSS is efficient for flood mapping.
Resumo:
Regenerating codes and codes with locality are two coding schemes that have recently been proposed, which in addition to ensuring data collection and reliability, also enable efficient node repair. In a situation where one is attempting to repair a failed node, regenerating codes seek to minimize the amount of data downloaded for node repair, while codes with locality attempt to minimize the number of helper nodes accessed. This paper presents results in two directions. In one, this paper extends the notion of codes with locality so as to permit local recovery of an erased code symbol even in the presence of multiple erasures, by employing local codes having minimum distance >2. An upper bound on the minimum distance of such codes is presented and codes that are optimal with respect to this bound are constructed. The second direction seeks to build codes that combine the advantages of both codes with locality as well as regenerating codes. These codes, termed here as codes with local regeneration, are codes with locality over a vector alphabet, in which the local codes themselves are regenerating codes. We derive an upper bound on the minimum distance of vector-alphabet codes with locality for the case when their constituent local codes have a certain uniform rank accumulation property. This property is possessed by both minimum storage regeneration (MSR) and minimum bandwidth regeneration (MBR) codes. We provide several constructions of codes with local regeneration which achieve this bound, where the local codes are either MSR or MBR codes. Also included in this paper, is an upper bound on the minimum distance of a general vector code with locality as well as the performance comparison of various code constructions of fixed block length and minimum distance.