874 resultados para Percutaneous fracture fixation


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Orthopaedic fracture fixation implants are increasingly being designed using accurate 3D models of long bones based on computer tomography (CT). Unlike CT, magnetic resonance imaging (MRI) does not involve ionising radiation and is therefore a desirable alternative to CT. This study aims to quantify the accuracy of MRI-based 3D models compared to CT-based 3D models of long bones. The femora of five intact cadaver ovine limbs were scanned using a 1.5T MRI and a CT scanner. Image segmentation of CT and MRI data was performed using a multi-threshold segmentation method. Reference models were generated by digitising the bone surfaces free of soft tissue with a mechanical contact scanner. The MRI- and CT-derived models were validated against the reference models. The results demonstrated that the CT-based models contained an average error of 0.15mm while the MRI-based models contained an average error of 0.23mm. Statistical validation shows that there are no significant differences between 3D models based on CT and MRI data. These results indicate that the geometric accuracy of MRI based 3D models was comparable to that of CT-based models and therefore MRI is a potential alternative to CT for generation of 3D models with high geometric accuracy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Small animal fracture models have gained increasing interest in fracture healing studies. To achieve standardized and defined study conditions, various variables must be carefully controlled when designing fracture healing experiments in mice or rats. The strain, age and sex of the animals may influence the process of fracture healing. Furthermore, the choice of the fracture fixation technique depends on the questions addressed, whereby intra- and extramedullary implants as well as open and closed surgical approaches may be considered. During the last few years, a variety of different, highly sophisticated implants for fracture fixation in small animals have been developed. Rigid fixation with locking plates or external fixators results in predominantly intramembranous healing in both mice and rats. Locking plates, external fixators, intramedullary screws, the locking nail and the pin-clip device allow different degrees of stability resulting in various amounts of endochondral and intramembranous healing. The use of common pins that do not provide rotational and axial stability during fracture stabilization should be discouraged in the future. Analyses should include at least biomechanical and histological evaluations, even if the focus of the study is directed towards the elucidation of molecular mechanisms of fracture healing using the largely available spectrum of antibodies and gene-targeted animals to study molecular mechanisms of fracture healing. This review discusses distinct requirements for the experimental setups as well as the advantages and pitfalls of the different fixation techniques in rats and mice.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper aims to review biomaterials used in manufacturing bone plates including advances in recent years and prospect in the future. It has found among all biomaterials, currently titanium and stainless steel alloys are the most common in production of bone plates. Other biomaterials such as Mg alloys, Ta alloys, SMAs, carbon fiber composites and bioceramics are potentially suitable for bone plates because of their advantages in biocompatibility, bioactivity and biodegradability. However, today either they are not used in bone plates or have limited applications in only some flexible small-size implants. This problem is mainly related to their poor mechanical properties. Additionally, production processes play an effective role. Therefore, in the future, further studies should be conducted to solve these problems and make them feasible for heavy-duty bone plates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The design of pre-contoured fracture fixation implants (plates and nails) that correctly fit the anatomy of a patient utilises 3D models of long bones with accurate geometric representation. 3D data is usually available from computed tomography (CT) scans of human cadavers that generally represent the above 60 year old age group. Thus, despite the fact that half of the seriously injured population comes from the 30 year age group and below, virtually no data exists from these younger age groups to inform the design of implants that optimally fit patients from these groups. Hence, relevant bone data from these age groups is required. The current gold standard for acquiring such data–CT–involves ionising radiation and cannot be used to scan healthy human volunteers. Magnetic resonance imaging (MRI) has been shown to be a potential alternative in the previous studies conducted using small bones (tarsal bones) and parts of the long bones. However, in order to use MRI effectively for 3D reconstruction of human long bones, further validations using long bones and appropriate reference standards are required. Accurate reconstruction of 3D models from CT or MRI data sets requires an accurate image segmentation method. Currently available sophisticated segmentation methods involve complex programming and mathematics that researchers are not trained to perform. Therefore, an accurate but relatively simple segmentation method is required for segmentation of CT and MRI data. Furthermore, some of the limitations of 1.5T MRI such as very long scanning times and poor contrast in articular regions can potentially be reduced by using higher field 3T MRI imaging. However, a quantification of the signal to noise ratio (SNR) gain at the bone - soft tissue interface should be performed; this is not reported in the literature. As MRI scanning of long bones has very long scanning times, the acquired images are more prone to motion artefacts due to random movements of the subject‟s limbs. One of the artefacts observed is the step artefact that is believed to occur from the random movements of the volunteer during a scan. This needs to be corrected before the models can be used for implant design. As the first aim, this study investigated two segmentation methods: intensity thresholding and Canny edge detection as accurate but simple segmentation methods for segmentation of MRI and CT data. The second aim was to investigate the usability of MRI as a radiation free imaging alternative to CT for reconstruction of 3D models of long bones. The third aim was to use 3T MRI to improve the poor contrast in articular regions and long scanning times of current MRI. The fourth and final aim was to minimise the step artefact using 3D modelling techniques. The segmentation methods were investigated using CT scans of five ovine femora. The single level thresholding was performed using a visually selected threshold level to segment the complete femur. For multilevel thresholding, multiple threshold levels calculated from the threshold selection method were used for the proximal, diaphyseal and distal regions of the femur. Canny edge detection was used by delineating the outer and inner contour of 2D images and then combining them to generate the 3D model. Models generated from these methods were compared to the reference standard generated using the mechanical contact scans of the denuded bone. The second aim was achieved using CT and MRI scans of five ovine femora and segmenting them using the multilevel threshold method. A surface geometric comparison was conducted between CT based, MRI based and reference models. To quantitatively compare the 1.5T images to the 3T MRI images, the right lower limbs of five healthy volunteers were scanned using scanners from the same manufacturer. The images obtained using the identical protocols were compared by means of SNR and contrast to noise ratio (CNR) of muscle, bone marrow and bone. In order to correct the step artefact in the final 3D models, the step was simulated in five ovine femora scanned with a 3T MRI scanner. The step was corrected using the iterative closest point (ICP) algorithm based aligning method. The present study demonstrated that the multi-threshold approach in combination with the threshold selection method can generate 3D models from long bones with an average deviation of 0.18 mm. The same was 0.24 mm of the single threshold method. There was a significant statistical difference between the accuracy of models generated by the two methods. In comparison, the Canny edge detection method generated average deviation of 0.20 mm. MRI based models exhibited 0.23 mm average deviation in comparison to the 0.18 mm average deviation of CT based models. The differences were not statistically significant. 3T MRI improved the contrast in the bone–muscle interfaces of most anatomical regions of femora and tibiae, potentially improving the inaccuracies conferred by poor contrast of the articular regions. Using the robust ICP algorithm to align the 3D surfaces, the step artefact that occurred by the volunteer moving the leg was corrected, generating errors of 0.32 ± 0.02 mm when compared with the reference standard. The study concludes that magnetic resonance imaging, together with simple multilevel thresholding segmentation, is able to produce 3D models of long bones with accurate geometric representations. The method is, therefore, a potential alternative to the current gold standard CT imaging.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

With many important developments over the last century, nowadays orthopedic bone plate now excels over other types of internal fixators in bone fracture fixation. The developments involve the design, material and implementation techniques of the plates. This paper aims to review the evolution in implementation technique and biomaterial of the orthopedic bone plates. Plates were initially used to fix the underlying bones firmly. Accordingly, Compression plate (CP), Dynamic compression plate (DCP), Limited contact dynamic compression plate (LC-DCP) and Point contact fixator (PC-Fix) were developed. Later, the implementation approach was changed to locking, and the Less Invasive Stabilization System (LISS) plate was introduced as a result. Finally, a combination of both of these approaches has been used by introducing the Locking Compression Plate (LCP). Currently, precontoured LCPs are mainly used for bone fracture fixation. In parallel with structure and implementation techniques, numerous advances have occurred in biomaterials of the plates. Titanium and stainless steel alloys are now the most common biomaterials in production of orthopedic bone plates. However, regarding the biocompatibility, bioactivity and biodegradability characteristics of Mg alloys, Ta alloys, SMAs, carbon fiber composites and bioceramics, these materials are considered as potentially suitable for plates. However, due to poor mechanical properties, they have very limited applications. Therefore, further studies are required in future to solve these problems and make them feasible for heavy-duty bone plates.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Finite Element modelling of bone fracture fixation systems allows computational investigation of the deformation response of the bone to load. Once validated, these models can be easily adapted to explore changes in design or configuration of a fixator. The deformation of the tissue within the fracture gap determines its healing and is often summarised as the stiffness of the construct. FE models capable of reproducing this behaviour would provide valuable insight into the healing potential of different fixation systems. Current model validation techniques lack depth in 6D load and deformation measurements. Other aspects of the FE model creation such as the definition of interfaces between components have also not been explored. This project investigated the mechanical testing and FE modelling of a bone– plate construct for the determination of stiffness. In depth 6D measurement and analysis of the generated forces, moments and movements showed large out of plane behaviours which had not previously been characterised. Stiffness calculated from the interfragmentary movement was found to be an unsuitable summary parameter as the error propagation is too large. Current FE modelling techniques were applied in compression and torsion mimicking the experimental setup. Compressive stiffness was well replicated, though torsional stiffness was not. The out of plane behaviours prevalent in the experimental work were not replicated in the model. The interfaces between the components were investigated experimentally and through modification to the FE model. Incorporation of the interface modelling techniques into the full construct models had no effect in compression but did act to reduce torsional stiffness bringing it closer to that of the experiment. The interface definitions had no effect on out of plane behaviours, which were still not replicated. Neither current nor novel FE modelling techniques were able to replicate the out of plane behaviours evident in the experimental work. New techniques for modelling loads and boundary conditions need to be developed to mimic the effects of the entire experimental system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Studies on quantitative fit analysis of precontoured fracture fixation plates emerged within the last few years and therefore, there is a wide research gap in this area. Quantitative fit assessment facilitates the measure of the gap between a fracture fixation plate and the underlying bone, and specifies the required plate fit criteria. For clinically meaningful fit assessment outcome, it is necessary to establish the appropriate criteria and parameter. The present paper studies this subject and recommends using multiple fit criteria and the maximum distance between the plate and underlying bone as fit parameter for clinically relevant outcome. We also propose the development of a software tool for automatic plate positioning and fit assessment for the purpose of implant design validation and optimization in an effort to provide better fitting implant that can assist proper fracture healing. The fundamental specifications of the software are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Intramedullary nailing is the standard fixation method for displaced diaphyseal fractures of the tibia. An optimal nail design should both facilitate insertion and anatomically fit the bone geometry at its final position in order to reduce the risk of stress fractures and malalignments. Due to the nonexistence of suitable commercial software, we developed a software tool for the automated fit assessment of nail designs. Furthermore, we demonstrated that an optimised nail, which fits better at the final position, is also easier to insert. Three-dimensional models of two nail designs and 20 tibiae were used. The fitting was quantified in terms of surface area, maximum distance, sum of surface areas and sum of maximum distances by which the nail was protruding into the cortex. The software was programmed to insert the nail into the bone model and to quantify the fit at defined increment levels. On average, the misfit during the insertion in terms of the four fitting parameters was smaller for the Expert Tibial Nail Proximal bend (476.3 mm2, 1.5 mm, 2029.8 mm2, 6.5 mm) than the Expert Tibial Nail (736.7 mm2, 2.2 mm, 2491.4 mm2, 8.0 mm). The differences were statistically significant (p ≤ 0.05). The software could be used by nail implant manufacturers for the purpose of implant design validation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Acute knee injury is a common event throughout life, and it is usually the result of a traffic accident, simple fall, or twisting injury. Over 90% of patients with acute knee injury undergo radiography. An overlooked fracture or delayed diagnosis can lead to poor patient outcome. The major aim of this thesis was retrospectively to study imaging of knee injury with a special focus on tibial plateau fractures in patients referred to a level-one trauma center. Multi-detector computed tomography (MDCT) findings of acute knee trauma were studied and compared to radiography, as well as whether non-contrast MDCT can detect cruciate ligaments with reasonable accuracy. The prevalence, type, and location of meniscal injuries in magnetic resonance imaging (MRI) were evaluated, particularly in order to assess the prevalence of unstable meniscal tears in acute knee trauma with tibial plateau fractures. The possibility to analyze with conventional MRI the signal appearance of menisci repaired with bioabsorbable arrows was also studied. The postoperative use of MDCT was studied in surgically treated tibial plateau fractures: to establish the frequency and indications of MDCT and to assess the common findings and their clinical impact in a level-one trauma hospital. This thesis focused on MDCT and MRI of knee injuries, and radiographs were analyzed when applica-ble. Radiography constitutes the basis for imaging acute knee injury, but MDCT can yield information beyond the capabilities of radiography. Especially in severely injured patients , sufficient radiographs are often difficult to obtain, and in those patients, radiography is unreliable to rule out fractures. MDCT detected intact cruciate ligaments with good specificity, accuracy, and negative predictive value, but the assessment of torn ligaments was unreliable. A total of 36% (14/39) patients with tibial plateau fracture had an unstable meniscal tear in MRI. When a meniscal tear is properly detected preoperatively, treatment can be combined with primary fracture fixation, thus avoiding another operation. The number of meniscal contusions was high. Awareness of the imaging features of this meniscal abnormality can help radiologists increase specificity by avoiding false-positive findings in meniscal tears. Postoperative menisci treated with bioabsorbable arrows showed no difference, among different signal intensities in MRI, among menisci between patients with operated or intact ACL. The highest incidence of menisci with an increased signal intensity extending to the meniscal surface was in patients whose surgery was within the previous 18 months. The results may indicate that a rather long time is necessary for menisci to heal completely after arrow repair. Whether the menisci with an increased signal intensity extending to the meniscal surface represent improper healing or re-tear, or whether this is just the earlier healing feature in the natural process remains unclear, and further prospective studies are needed to clarify this. Postoperative use of MDCT in tibial plateau fractures was rather infrequent even in this large trauma center, but when performed, it revealed clinically significant information, thus benefitting patients in regard to treatment.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fractures and arthritic joint destruction are common in the hand. A reliable and stable fracture fixation can be achieved by metal implants, which however, become unnecessary or even harmful after consolidation. The silicone implant arthroplasty is the current method of choice for reconstruction of metacarpophalangeal joints in rheumatoid patients. However, the outcome tends to worsen with long-term follow-up and implant-related complications become frequent. To address these problems, bioabsorbable implants were designed for the hand area. Aims of the studies were: 1) to evaluate the biomechanical stabilities provided by self- reinforced (SR) bioabsorbable implants in a transverse and an oblique osteotomy of small tubular bones and to compare them with those provided by metal implants; 2) to evaluate the SR poly-L/DL-lactide 70/30 plate for osteosynthesis in a proof-of-principle type of experiment in three cases of hand injuries; and 3) to evaluate the poly-L/D-lactide (PLA) 96/4 joint scaffold, a composite joint implant with a supplementary intramedullary Polyactive® stem and Swanson silicone implant in an experimental small joint arthroplasty model. Methods used were: 1) 112 fresh frozen human cadaver and 160 pig metacarpal bones osteotomised transversally or obliquely, respectively, and tested ex vivo in three point bending and in torsion; 2) three patient cases of complex hand injuries; and 3) the fifth metacarpophalangeal joints reconstructed in 18 skeletally-mature minipigs and studied radiologically and histologically. The initial fixation stabilities provided by bioabsorbable implants in the tubular bones of the hand were comparable with currently-employed metal fixation techniques, and were sufficient for fracture stabilisation in three preliminary cases in the hand. However, in torsion the stabilities provided by bioabsorbable implants were lower than that provided by metal counterparts. The bioabsorbable plate enhanced the bending stability for the bioabsorbable fixation construct. PLA 96/4 joint scaffolds demonstrated good biocompatibility and enabled fibrous tissue in-growth in situ. After scaffold degradation, a functional, stable pseudarthrosis with dense fibrous connective tissue was formed. However, the supplementary Polyactive® stem caused a deleterious tissue reaction and therefore the stem can not be applied to the composite joint implant. The bioabsorbable implants have potential for use in clinical hand surgery, but have to await validation in clinical patient series and controlled trials.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Toward preparing strong multi-biofunctional materials, poly(ethylenimine) (PEI) conjugated graphene oxide (GO_PEI) was synthesized using poly(acrylic acid) (PAA) as a spacer and incorporated in poly( e-caprolactone) (PCL) at different fractions. GO_PEI significantly promoted the proliferation and formation of focal adhesions in human mesenchymal stem cells (hMSCs) on PCL. GO_PEI was highly potent in inducing stem cell osteogenesis leading to near doubling of alkaline phosphatase expression and mineralization over neat PCL with 5% filler content and was approximate to 50% better than GO. Remarkably, 5% GO_ PEI was as potent as soluble osteoinductive factors. Increased adsorption of osteogenic factors due to the amine and oxygen containing functional groups on GO_ PEI augment stem cell differentiation. GO_ PEI was also highly efficient in imparting bactericidal activity with 85% reduction in counts of E. coli colonies compared to neat PCL at 5% filler content and was more than twice as efficient as GO. This may be attributed to the synergistic effect of the sharp edges of the particles along with the presence of the different chemical moieties. Thus, GO_ PEI based polymer composites can be utilized to prepare bioactive resorbable biomaterials as an alternative to using labile biomolecules for fabricating orthopedic devices for fracture fixation and tissue engineering.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Graphene-based polymer nanocomposites are being studied for biomedical applications. Polymer nanocomposites can be processed differently to generate planar two-dimensional (2D) substrates and porous three-dimensional (3D) scaffolds. The objective of this work was to investigate potential differences in biological response to graphene in polymer composites in the form of 2D substrates and 3D scaffolds. Polycaprolactone (PCL) nanocomposites were prepared by incorporating 1% of graphene oxide (GO) and reduced graphene oxide (RGO). GO increased modulus and strength of PCL by 44 and 22% respectively, whereas RGO increased modulus and strength by 22 and 16%, respectively. RGO increased the water contact angle of PCL from 81 degrees to 87 degrees whereas GO decreased it to 77 degrees. In 2D, osteoblast proliferated 15% more on GO composites than on PCL whereas RGO composite showed 17% decrease in cell proliferation, which may be attributed to differences in water wettability. In 3D, initial cell proliferation was markedly retarded in both GO (36% lower) and RGO (55% lower) composites owing to increased roughness due to the presence of the protruding nanoparticles. Cells organized into aggregates in 3D in contrast to spread and randomly distributed cells on 2D discs due to the macro-porous architecture of the scaffolds. Increased cell-cell contact and altered cellular morphology led to significantly higher mineralization in 3D. This study demonstrates that the cellular response to nanoparticles in composites can change markedly by varying the processing route and has implications for designing orthopedic implants such as resorbable fracture fixation devices and tissue scaffolds using such nanocomposites. (c) 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 732-749, 2016.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: In patients with myelomeningocele (MMC), a high number of fractures occur in the paralyzed extremities, affecting mobility and independence. The aims of this retrospective cross-sectional study are to determine the frequency of fractures in our patient cohort and to identify trends and risk factors relevant for such fractures. MATERIALS AND METHODS: Between March 1988 and June 2005, 862 patients with MMC were treated at our hospital. The medical records, surgery reports, and X-rays from these patients were evaluated. RESULTS: During the study period, 11% of the patients (n = 92) suffered one or more fractures. Risk analysis showed that patients with MMC and thoracic-level paralysis had a sixfold higher risk of fracture compared with those with sacral-level paralysis. Femoral-neck z-scores measured by dual-energy X-ray absorptiometry (DEXA) differed significantly according to the level of neurological impairment, with lower z-scores in children with a higher level of lesion. Furthermore, the rate of epiphyseal separation increased noticeably after cast immobilization. Mainly patients who could walk relatively well were affected. CONCLUSIONS: Patients with thoracic-level paralysis represent a group with high fracture risk. According to these results, fracture and epiphyseal injury in patients with MMC should be treated by plaster immobilization. The duration of immobilization should be kept to a minimum (<4 weeks) because of increased risk of secondary fractures. Alternatively, patients with refractures can be treated by surgery, when nonoperative treatment has failed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Alpha polyesters such as poly(L-lactide) and poly(glycolide) are biodegradable materials used in fracture fixation and they need to be assessed for problems associated with their degradation products. This study has compared cell responses to low molecular weight poly(L-lactide) particles, lactate monomer, poly(glycolide) particles and glycolic acid at cytotoxic and sub-cytotoxic concentrations. Murine macrophages were cultured in vitro and the release of lactate dehydrogenase (LDH), prostaglandin E-2 (PGE(2)) and interleukin-1 alpha IL-1alpha was measured following the addition of particles or monomer. Experiments revealed that both the poly(L-lactide) and poly(glycolide) particles gave rise to dose dependent increases in LDH release and an increase in IL-1alpha and PGE(2) release. Comparisons of the poly(L-lactide) particles to the poly(glycolide) particles did not reveal any differences in their stimulation of LDH, IL-1alpha and PGE(2) release. The lactate and glycolate monomers did not increase PGE(2) or IL-1alpha release above control levels. There was no difference in biocompatibility between the poly(L-lactide) and poly(glycolide) degradation products both in particulate and monomeric form. (C) 2003 Kluwer Academic Publishers.