989 resultados para Patch-occupancy model


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we evaluate the Probabilistic Occupancy Map (POM) pedestrian detection algorithm on the PETS 2009 benchmark dataset. POM is a multi-camera generative detection method, which estimates ground plane occupancy from multiple background subtraction views. Occupancy probabilities are iteratively estimated by fitting a synthetic model of the background subtraction to the binary foreground motion. Furthermore, we test the integration of this algorithm into a larger framework designed for understanding human activities in real environments. We demonstrate accurate detection and localization on the PETS dataset, despite suboptimal calibration and foreground motion segmentation input.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spontaneous activity of the brain at rest frequently has been considered a mere backdrop to the salient activity evoked by external stimuli or tasks. However, the resting state of the brain consumes most of its energy budget, which suggests a far more important role. An intriguing hint comes from experimental observations of spontaneous activity patterns, which closely resemble those evoked by visual stimulation with oriented gratings, except that cortex appeared to cycle between different orientation maps. Moreover, patterns similar to those evoked by the behaviorally most relevant horizontal and vertical orientations occurred more often than those corresponding to oblique angles. We hypothesize that this kind of spontaneous activity develops at least to some degree autonomously, providing a dynamical reservoir of cortical states, which are then associated with visual stimuli through learning. To test this hypothesis, we use a biologically inspired neural mass model to simulate a patch of cat visual cortex. Spontaneous transitions between orientation states were induced by modest modifications of the neural connectivity, establishing a stable heteroclinic channel. Significantly, the experimentally observed greater frequency of states representing the behaviorally important horizontal and vertical orientations emerged spontaneously from these simulations. We then applied bar-shaped inputs to the model cortex and used Hebbian learning rules to modify the corresponding synaptic strengths. After unsupervised learning, different bar inputs reliably and exclusively evoked their associated orientation state; whereas in the absence of input, the model cortex resumed its spontaneous cycling. We conclude that the experimentally observed similarities between spontaneous and evoked activity in visual cortex can be explained as the outcome of a learning process that associates external stimuli with a preexisting reservoir of autonomous neural activity states. Our findings hence demonstrate how cortical connectivity can link the maintenance of spontaneous activity in the brain mechanistically to its core cognitive functions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growing energy consumption in the residential sector represents about 30% of global demand. This calls for Demand Side Management solutions propelling change in behaviors of end consumers, with the aim to reduce overall consumption as well as shift it to periods in which demand is lower and where the cost of generating energy is lower. Demand Side Management solutions require detailed knowledge about the patterns of energy consumption. The profile of electricity demand in the residential sector is highly correlated with the time of active occupancy of the dwellings; therefore in this study the occupancy patterns in Spanish properties was determined using the 2009–2010 Time Use Survey (TUS), conducted by the National Statistical Institute of Spain. The survey identifies three peaks in active occupancy, which coincide with morning, noon and evening. This information has been used to input into a stochastic model which generates active occupancy profiles of dwellings, with the aim to simulate domestic electricity consumption. TUS data were also used to identify which appliance-related activities could be considered for Demand Side Management solutions during the three peaks of occupancy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transcriptional dysfunction is a prominent hallmark of Huntington's disease (HD). Several transcription factors have been implicated in the aetiology of HD progression and one of the most prominent is repressor element 1 (RE1) silencing transcription factor (REST). REST is a global repressor of neuronal gene expression and in the presence of mutant Huntingtin increased nuclear REST levels lead to elevated RE1 occupancy and a concomitant increase in target gene repression, including brain-derived neurotrophic factor. It is of great interest to devise strategies to reverse transcriptional dysregulation caused by increased nuclear REST and determine the consequences in HD. Thus far, such strategies have involved RNAi or mutant REST constructs. Decoys are double-stranded oligodeoxynucleotides corresponding to the DNA-binding element of a transcription factor and act to sequester it, thereby abrogating its transcriptional activity. Here, we report the use of a novel decoy strategy to rescue REST target gene expression in a cellular model of HD. We show that delivery of the decoy in cells expressing mutant Huntingtin leads to its specific interaction with REST, a reduction in REST occupancy of RE1s and rescue of target gene expression, including Bdnf. These data point to an alternative strategy for rebalancing the transcriptional dysregulation in HD.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SOUZA, Anderson A. S. ; SANTANA, André M. ; BRITTO, Ricardo S. ; GONÇALVES, Luiz Marcos G. ; MEDEIROS, Adelardo A. D. Representation of Odometry Errors on Occupancy Grids. In: INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, 5., 2008, Funchal, Portugal. Proceedings... Funchal, Portugal: ICINCO, 2008.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The microstrip antennas are in constant evidence in current researches due to several advantages that it presents. Fractal geometry coupled with good performance and convenience of the planar structures are an excellent combination for design and analysis of structures with ever smaller features and multi-resonant and broadband. This geometry has been applied in such patch microstrip antennas to reduce its size and highlight its multi-band behavior. Compared with the conventional microstrip antennas, the quasifractal patch antennas have lower frequencies of resonance, enabling the manufacture of more compact antennas. The aim of this work is the design of quasi-fractal patch antennas through the use of Koch and Minkowski fractal curves applied to radiating and nonradiating antenna s edges of conventional rectangular patch fed by microstrip inset-fed line, initially designed for the frequency of 2.45 GHz. The inset-fed technique is investigated for the impedance matching of fractal antennas, which are fed through lines of microstrip. The efficiency of this technique is investigated experimentally and compared with simulations carried out by commercial software Ansoft Designer used for precise analysis of the electromagnetic behavior of antennas by the method of moments and the neural model proposed. In this dissertation a study of literature on theory of microstrip antennas is done, the same study is performed on the fractal geometry, giving more emphasis to its various forms, techniques for generation of fractals and its applicability. This work also presents a study on artificial neural networks, showing the types/architecture of networks used and their characteristics as well as the training algorithms that were used for their implementation. The equations of settings of the parameters for networks used in this study were derived from the gradient method. It will also be carried out research with emphasis on miniaturization of the proposed new structures, showing how an antenna designed with contours fractals is capable of a miniaturized antenna conventional rectangular patch. The study also consists of a modeling through artificial neural networks of the various parameters of the electromagnetic near-fractal antennas. The presented results demonstrate the excellent capacity of modeling techniques for neural microstrip antennas and all algorithms used in this work in achieving the proposed models were implemented in commercial software simulation of Matlab 7. In order to validate the results, several prototypes of antennas were built, measured on a vector network analyzer and simulated in software for comparison

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work has as main objective the study of arrays of microstrip antennas with superconductor rectangular patch. The phases and the radiation patterns are analyzed. A study of the main theories is presented that explain the microscopic and macroscopic phenomena of superconductivity. The BCS, London equations and the Two Fluid Model, are theories used in the applications of superconductors, at the microstrip antennas and antennas arrays. Phase Arrangements will be analyzed in linear and planar configurations. The arrangement factors of these configurations are obtained, and the phase criteria and the spacing between the elements, are examined in order to minimize losses in the superconductor, compared with normal conductors. The new rectangular patch antenna, consist of a superconducting material, with the critical temperature of 233 K, whose formula is Tl5Ba4Ca2Cu9Oy, is analyzed by the method of the Transverse nTransmission Line (TTL), developed by H. C. C. Fernandes, applied in the Fourier Transform Domain (FTD). The TTL is a full-wave method, which has committed to obtaining the electromagnetic fields in terms of the transverse components of the structure. The inclusion of superconducting patch is made using the complex resistive boundary condition, using the impedance of the superconductor in the Dyadic Green function, in the structure. Results are obtained from the resonance frequency depending on the parameters of the antenna using superconducting material, radiation patterns in E-Plane and H -Plane, the phased antennas array in linear and planar configurations, for different values of phase angles and different spacing between the elements

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work has as main objective to study the application of microstrip antennas with patch and use of superconducting arrays of planar and linear phase. Was presented a study of the main theories that explain clearly the superconductivity. The BCS theory, Equations of London and the Two Fluid Model are theories that supported the implementation of the superconducting microstrip antennas. Arrangements phase was analyzed in linear and planar configuration of its antennas are reported factors such arrays to settings and criteria of phase and the spacing between the elements that make the arrayst was reviewed in order to minimize losses due to secondary lobes. The antenna used has a rectangular patch Sn5InCa2Ba4Cu10Oy the superconducting material was analyzed by the method of Transverse Transmission Line (TTL) applied in the field of Fourier transform (FTD). The TTL is a full-wave method, which has committed to obtaining the electromagnetic fields in terms of cross-cutting components of the structure. The inclusion of superconducting patch is made using the boundary condition, complex resistive. Are obtained when the resonant frequency depending on the parameters of the antenna, radiation pattern of E-Plan and H-Plan for the M-phase arrangements of antennas in the linear and planar configurations for different values of phase and spacing between the elements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examine a Lipkin based two-level pairing model at finite temperature and in the thermodynamic limit. Whereas at T = 0 the model exhibits a superconducting ground state for sufficiently high values of the coupling constant, a partially superconducting phase in which some of the particles are paired, is found to survive at high temperatures in a special treatment. This phase is a mixture of abnormally-occupied eigenstates, which lie at higher energy, of the interactionless model Hamiltonian.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new methodology for the synthesis of tunable patch filters is presented. The methodology helps the designer to perform a theoretical analysis of the filter through a coupling matrix that includes the effect of the tuning elements used to tune the filter. This general methodology accounts for any tuning parameter desired and was applied to the design of a tunable dual-mode patch filter with independent control of center frequency and bandwidth (BW). The bandpass filter uses a single triangular resonator with two etched slots that split the fundamental degenerate modes and form the filter passband. Varactor diodes assembled across the slots are used to vary the frequency of each degenerate fundamental mode independently, which is feasible due to the nature of the coupling scheme of the filter. The varactor diode model used in simulations, their assembling, the dc bias configuration, and measured results are presented. The theory results are compared to the simulations and to measurements showing a very good agreement and validating the proposed methodology. The fabricated filter presents an elliptic response with 20% of center frequency tuning range around 3.2 GHz and a fractional BW variation from 4% to 12% with low insertion loss and high power handling with a 1-dB compression point higher than +14.5 dB.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Voltage-gated sodium channels dysregulation is important for hyperexcitability leading to pain persistence. Sodium channel blockers currently used to treat neuropathic pain are poorly tolerated. Getting new molecules to clinical use is laborious. We here propose a drug already marketed as anticonvulsant, rufinamide. Methods: We compared the behavioral effect of rufinamide to amitriptyline using the Spared Nerve Injury neuropathic pain model in mice. We compared the effect of rufinamide on sodium currents using in vitro patch clamp in cells expressing the voltage-gated sodium channel Nav1.7 isoform and on dissociated dorsal root ganglion neurons to amitriptyline and mexiletine. Results: In naive mice, amitriptyline (20 mg/kg) increased withdrawal threshold to mechanical stimulation from 1.3 (0.6–1.9) (median [95% CI]) to 2.3 g (2.2–2.5) and latency of withdrawal to heat stimulation from 13.1 (10.4–15.5) to 30.0 s (21.8–31.9), whereas rufinamide had no effect. Rufinamide and amitriptyline alleviated injury-induced mechanical allodynia for 4 h (maximal effect: 0.10 ± 0.03 g (mean ± SD) to 1.99 ± 0.26 g for rufinamide and 0.25 ± 0.22 g to 1.92 ± 0.85 g for amitriptyline). All drugs reduced peak current and stabilized the inactivated state of voltage-gated sodium channel Nav1.7, with similar effects in dorsal root ganglion neurons. Conclusions: At doses alleviating neuropathic pain, amitriptyline showed alteration of behavioral response possibly related to either alteration of basal pain sensitivity or sedative effect or both. Side-effects and drug tolerance/compliance are major problems with drugs such as amitriptyline. Rufinamide seems to have a better tolerability profile and could be a new alternative to explore for the treatment of neuropathic pain.