992 resultados para Particulate matter concentrations
Resumo:
The TEX86 paleotemperature proxy is based on archaeal glycerol dibiphytanyl glycerol tetraether (GDGT) lipids preserved in marine sediments, yet both the influence of different physiological factors on the structural distribution of GDGTs, and the mechanism(s) by which GDGTs are exported to marine sediments remain unclear. In particular, TEX86 temperatures derived directly from suspended particulate matter (SPM) in the water column can diverge strongly from corresponding in situ temperatures. Here we investigated the abundance and structural distribution of GDGTs in the South-west and Equatorial Atlantic Ocean by examining SPM collected from four surface 1000 m depth profiles spanning 48 degrees of latitude. The depth distribution of GDGTs was consistent with our current understanding of marine archaeal ecology, and specifically of ammonia-oxidizing Thaumarchaeota. Maximum GDGT concentrations occurred at the base of the primary NO2- maximum. Core GDGTs dominated the structural distribution in surface waters, while intact polar GDGTs - thought to potentially indicate live cells - were more abundant at all depths below the maximum NO2- concentration. When integrated through the upper 1000 m of the water column, > 98% of GDGTs were present in waters at and below the depth of the primary NO2- maximum. TEX86-calculated temperatures showed local minima at the depth of the NO2- maximum, while the ratio of GDGT 2:GDGT 3 [2/3] increased with depth throughout the upper water column. These results were used to model the depth of origin for GDGTs exported to sediments. By comparing our SPM data to published TEX86 values and [2/3] ratios from sediments near our study sites, we conclude that most GDGTs are exported from the depth of maximum GDGT concentrations, near the subsurface NO2- maximum (~80-250 m). This indicates that local ammonia oxidation dynamics are important regional controls on the GDGT ratios preserved in sediments. Predicting the extent to which subsurface variations in archaeal activity may influence the sedimentary TEX86 record will require a better understanding of how site-specific productivity and particle dynamics in the upper water column influence the depth of origin for exported organic matter.
Particulate matter and organic compounds in snow, ice, and water of the Lazarev and Cooperation Seas
Resumo:
Integrated studies of particulate matter and organic compounds in surface waters and the snow-ice cover by means of geochemical (concentrations of the particulate matter, Corg, hydrocarbons, lipids, and chlorophyll a) and optical techniques were performed in the Southern Ocean and in the East Atlantic Ocean along the vessel's route: Africa - Antarctica - Africa - St. Petersburg. Correlations between studied compounds were found. It was shown that supply of pollutants affects not only concentrations but also proportions of the considered compounds. New data were obtained on the processes of accumulation of particulate matter and organic compounds under ice formation.
The CCRUSH Study: Coarse and fine particulate matter measurements in northeastern Colorado 2009-2012
Resumo:
Coarse (PM10-2.5) and fine (PM2.5) particulate matter in the atmosphere adversely affect human health and influence climate. While PM2.5 is relatively well studied, less is known about the sources and fate of PM10-2.5. The Colorado Coarse Rural-Urban Sources and Health (CCRUSH) study measured PM10-2.5 and PM2.5 mass concentrations, as well as the fraction of semi-volatile material (SVM) in each size regime (SVM2.5, SVM10-2.5), for three years in Denver and comparatively rural Greeley, Colorado. Agricultural operations east of Greeley appear to have contributed to the peak PM10-2.5 concentrations there, but concentrations were generally lower in Greeley than in Denver. Traffic-influenced sites in Denver had PM10-2.5 concentrations that averaged from 14.6 to 19.7 µg/m**3 and mean PM10-2.5/PM10 ratios of 0.56 to 0.70, higher than at residential sites in Denver or Greeley. PM10-2.5 concentrations were more temporally variable than PM2.5 concentrations. Concentrations of the two pollutants were not correlated. Spatial correlations of daily averaged PM10-2.5 concentrations ranged from 0.59 to 0.62 for pairs of sites in Denver and from 0.47 to 0.70 between Denver and Greeley. Compared to PM10-2.5, concentrations of PM2.5 were more correlated across sites within Denver and less correlated between Denver and Greeley. PM10-2.5 concentrations were highest during the summer and early fall, while PM2.5 and SVM2.5 concentrations peaked in winter during periodic multi-day inversions. SVM10-2.5 concentrations were low at all sites. Diurnal peaks in PM10-2.5 and PM2.5 concentrations corresponded to morning and afternoon peaks of traffic activity, and were enhanced by boundary layer dynamics. SVM2.5 concentrations peaked around noon on both weekdays and weekends. PM10-2.5 concentrations at sites located near highways generally increased with wind speeds above about 3 m/s. Little wind speed dependence was observed for the residential sites in Denver and Greeley.
Resumo:
Back-pressure on a diesel engine equipped with an aftertreatment system is a function of the pressure drop across the individual components of the aftertreatment system, typically, a diesel oxidation catalyst (DOC), catalyzed particulate filter (CPF) and selective catalytic reduction (SCR) catalyst. Pressure drop across the CPF is a function of the mass flow rate and the temperature of the exhaust flowing through it as well as the mass of particulate matter (PM) retained in the substrate wall and the cake layer that forms on the substrate wall. Therefore, in order to control the back-pressure on the engine at low levels and to minimize the fuel consumption, it is important to control the PM mass retained in the CPF. Chemical reactions involving the oxidation of PM under passive oxidation and active regeneration conditions can be utilized with computer numerical models in the engine control unit (ECU) to control the pressure drop across the CPF. Hence, understanding and predicting the filtration and oxidation of PM in the CPF and the effect of these processes on the pressure drop across the CPF are necessary for developing control strategies for the aftertreatment system to reduce back-pressure on the engine and in turn fuel consumption particularly from active regeneration. Numerical modeling of CPF's has been proven to reduce development time and the cost of aftertreatment systems used in production as well as to facilitate understanding of the internal processes occurring during different operating conditions that the particulate filter is subjected to. A numerical model of the CPF was developed in this research work which was calibrated to data from passive oxidation and active regeneration experiments in order to determine the kinetic parameters for oxidation of PM and nitrogen oxides along with the model filtration parameters. The research results include the comparison between the model and the experimental data for pressure drop, PM mass retained, filtration efficiencies, CPF outlet gas temperatures and species (NO2) concentrations out of the CPF. Comparisons of PM oxidation reaction rates obtained from the model calibration to the data from the experiments for ULSD, 10 and 20% biodiesel-blended fuels are presented.
Resumo:
OBJECTIVE: To analyze the impact on human health of exposure to particulate matter emitted from burnings in the Brazilian Amazon region. METHODS: This was an ecological study using an environmental exposure indicator presented as the percentage of annual hours (AH%) of PM2.5 above 80 μg/m3. The outcome variables were the rates of hospitalization due to respiratory disease among children, the elderly and the intermediate age group, and due to childbirth. Data were obtained from the National Space Research Institute and the Ministry of Health for all of the microregions of the Brazilian Amazon region, for the years 2004 and 2005. Multiple regression models for the outcome variables in relation to the predictive variable AH% of PM2.5 above 80 μg/m3 were analyzed. The Human Development Index (HDI) and mean number of complete blood counts per 100 inhabitants in the Brazilian Amazon region were the control variables in the regression analyses. RESULTS: The association of the exposure indicator (AH%) was higher for the elderly than for other age groups (β = 0.10). For each 1% increase in the exposure indicator there was an increase of 8% in child hospitalization, 10% in hospitalization of the elderly, and 5% for the intermediate age group, even after controlling for HDI and mean number of complete blood counts. No association was found between the AH% and hospitalization due to childbirth. CONCLUSIONS: The indicator of atmospheric pollution showed an association with occurrences of respiratory diseases in the Brazilian Amazon region, especially in the more vulnerable age groups. This indicator may be used to assess the effects of forest burning on human health.
Resumo:
The circulation and transport of suspended particulate matter in the Caravelas Estuary are assessed. Nearly-synoptic hourly hydrographic, current (ADCP velocity and volume transport) and suspended particulate matter data were collected during a full semidiurnal spring tide, on the two transects Boca do Tomba and Barra Velha and on longitudinal sections at low and high tide. On the first transect the peak ebb currents (-1.5 ms-1) were almost twice as strong as those of the wider and shallow Barra Velha inlet (-0.80 ms-1) and the peak flood currents were 0.75 and 0.60 ms-1, respectively. Due to the strong tidal currents both inlets had weak vertical salinity stratification and were classified with the Stratification-circulation Diagram as Type 2a (partially mixed-weakly stratified) and Type 1a (well mixed). Volume transports were very close, ranging from -3,500 to 3,100 m³s-1 at the ebb and flood, respectively, with a residual -630 m³s-1. The concentration of the suspended particulate matter was closely related to the tidal variation and decreased landwards from 50 mg.L-1 at the estuary mouth, to 10 mg.L-1 at distances of 9 and 16 km for the low and high tide experiments, respectively. The total residual SPM transport was out of the estuary at rates of -18 tons per tidal cycle.
Resumo:
Biomass burning is an important source of atmospheric Particulate Matter (PM) in Brazil: the burning of forests in the northwest and of sugar cane plantations in the southeast are important examples. The objective of this work is the measurement of the PM emission profile of burning of sugar cane and other characteristic vegetative burning in the region of Sao Carlos-SP/Brazil. Samples of PM(10) and PM(2.5) were collected in different conditions, including small laboratory controlled burnings and real ones. The samples were analysed by X-Ray Fluorescence (XRF) and 14 chemical elements quantified. t-Student tests were performed to compare the obtained profiles, using as a reference a vegetative burn profile taken from the USEPA data bank SPECIATE. All measured profiles presented significant amounts of Cl and K, which are confirmed as tracers of sugar cane foliage burning.
Resumo:
Air pollution is an important environmental health risk factor that can result in many different gestational and reproductive negative outcomes. In this study, we have investigated the effects of two different times of exposure (before conception and during pregnancy) to urban ambient particulate matter on reproductive and pregnancy outcomes in mice. Using exposure chambers receiving filtered (F) and non-filtered (NF) air, we observed that exposed females exhibited changes in the length of estrus cycle and extended estrus and, therefore, a reduction in the number of cycles during the studied period (F2.6 +/- 0.22 and NF 1.2 +/- 0.29, p = 0.03). The mean number of antral follicles declined by 36% (p = 0.04) in NF mice (75 +/- 35.2) compared to F mice (118.6 +/- 18.4). our results further indicate a significant increase in time necessary for mating and decreased fertility and pregnancy indices (p = 0.003) in NF couples. Mean post-implantation loss rates were increased by 70% (p <= 0.005) in the NF2 group (exposed before and during pregnancy to NF air) compared to the F1 group (exposed before and during pregnancy to F air) and were influenced by both pre-gestational (p < 0.004) and gestational (p < 0.01) period exposure. Fetal weight was significantly higher in the F1 group when compared with the other groups (p < 0.001), at a 20% higher weight in the F1 group (0.86 +/- 0.18 g) than in the NF2 group (0.68 +/- 0.10g). Furthermore, fetal weight was influenced by both pre-gestational and gestational period exposure, and a significant interaction between these two factors was found (p < 0.001). This study demonstrated that exposure to ambient levels of urban traffic-generated particulate matter negatively affects different functions and stages of the reproductive process. Our results also reinforce the idea that maternal exposure to air pollution is linked to negative pregnancy outcomes, even if the exposure occurs only before conception. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
Air pollution is associated with morbidity and mortality induced by respiratory diseases. However, the mechanisms therein involved are not yet fully clarified. Thus, we tested the hypothesis that a single acute exposure to low doses of fine particulate matter (PM2.5) may induce functional and histological lung changes and unchain inflammatory and oxidative stress processes. PM2.5 was collected from the urban area of Sao Paulo city during 24 h and underwent analysis for elements and polycyclic aromatic hydrocarbon contents. Forty-six male BALB/c mice received intranasal instillation of 30 mu L of saline (CTRL) or PM2.5 at 5 or 15 mu g in 30 mu L of saline (P5 and P15, respectively). Twenty-four hours later, lung mechanics were determined. Lungs were then prepared for histological and biochemical analysis. P15 group showed significantly increased lung impedance and alveolar collapse, as well as lung tissue inflammation, oxidative stress and damage. P5 presented values between CTRL and P15: higher mechanical impedance and inflammation than CTRL, but lower inflammation and oxidative stress than P15. In conclusion, acute exposure to low doses of fine PM induced lung inflammation, oxidative stress and worsened lung impedance and histology in a dose-dependent pattern in mice.
Resumo:
Objective: To evaluate effects of pre- and/or postnatal exposure to ambient fine particulate matter on fertilization, embryo development, and cell lineage segregation in preimplantation blastocysts using the IVF mouse model. Design: Animal model. Setting: Academic institution. Animal(S): Six-week-old, superovulated mice. Intervention(s): Pre- and postnatal exposure to filtered air (FA-FA), filtered-ambient air (FA-AA), or ambient air (AA-AA) in exposure chambers 24 hours a day for 9 weeks. Main Outcome Measure(S): Gestation length, litter size, sex ratio, ovarian response to superovulation, fertilization rate, embryo development, blastocyst and hatching rates, total cell count, and proportion of cell allocation to inner-cell mass (ICM) and trophectoderm (TE). Result(S): Gestation length, litter size and birth weight, live-birth index, and sex ratio were similar among exposure groups. Ovarian response was not affected by the exposure protocol. A multivariate effect for pre- and/or postnatal exposure to ambient fine particulate matter on IVF, embryo development, and blastocyst differential staining was found. Cell counts in ICM and ICM/TE ratios in blastocysts produced in the FA-FA protocol were significantly higher than in blastocysts produced in the FA-AA and AA-AA protocols. No difference in total cell count was observed among groups. Conclusion(S): Our study suggests that exposure to ambient fine particulate matter may negatively affect female reproductive health by disrupting the lineage specification at the blastocyst stage without interfering in early development of the mouse embryo. (Fertil Steril (R) 2009;92:1725-35. (C) 2009 by American Society for Reproductive Medicine.)
Resumo:
This work characterizes the effects of ambient levels of urban particulate matter (PM(2.5)) from the city of Sao Paulo on spermatogenesis using mice exposed during the embryo-fetal and/or postnatal phases of development. Parental generations (BALB/c mice) were exposed to air pollution in chambers with or without filtering PM(2.5) for 4 months. Animals were mated, and half of the 1-day-old offspring were moved between chambers, which yielded prenatal and postnatal groups. Remaining offspring comprised the non-exposed and pre+postnatal exposed groups. After 90 days, the animals were sacrificed for testis collection and weighing. Optical microscopy was used for the morphometric analyses of the cell counts, spermatogenic cycle, proliferation, and apoptosis. Prenatally exposed animals presented reduced body and testicular weight with an increased gonadosomatic index (GSI). Testicular volume also decreased, as well as the tubular diameter in testes of the same animals. Proliferation, apoptosis, and spermatogenic cycle analyses showed no significant differences among groups. However, the tubules at stage VII of pre- and postnatal animals presented a reduced number of elongated spermatids. Pre+postnatal group presented higher spermatid head retention at stages VIII-XII. These results show that ambient levels of PM(2.5) from Sao Paulo city affect spermatogenesis by damaging sperm production.
Resumo:
In this work, 14 primary schools of Lisbon city, Portugal, followed a questionnaire of the ISAAC - International Study of Asthma and Allergies in Childhood Program, in 2009/2010. The questionnaire contained questions to identify children with respiratory diseases (wheeze, asthma and rhinitis). Total particulate matter (TPM) was passively collected inside two classrooms of each of 14 primary schools. Two types of filter matrices were used to collect TPM: Millipore (IsoporeTM) polycarbonate and quartz. Three campaigns were selected for the measurement of TPM: Spring, Autumn and Winter. The highest difference between the two types of filters is that the mass of collected particles was higher in quartz filters than in polycarbonate filters, even if their correlation is excellent. The highest TPM depositions occurred between October 2009 and March 2010, when related with rhinitis proportion. Rhinitis was found to be related to TPM when the data were grouped seasonally and averaged for all the schools. For the data of 2006/2007, the seasonal variation was found to be related to outdoor particle deposition (below 10 μm).
Resumo:
The handling of waste can be responsible for occupational exposure to particles and fungi. The aim of this study was to characterize exposure to particles and fungi in a composting plant. Measurements of particulate matter were performed using portable direct-reading equipment. Air samples of 50L were collected through an impaction method with a flow rate of 140L/min onto malt extract agar supplemented with chloramphenicol (0.05%). Surfaces samples were also collected. All the samples were incubated at 27ºC for 5 to 7 days. Particulate matter data showed higher contamination for PM, and PM10 sizes. Aspergillus genus presents the highest air prevalence (90.6%). Aspergillus niger (32.6%), A. fumigatus (26.5%) and A. flavus (16.3%) were the most prevalent fungi in air sampling, and Mucor sp. (39.2%), Aspergillus niger (30.9%) and A. fumigatus (28.7%) were the most found in surfaces. the results obtained claim the attention to the need of further research.
Resumo:
OBJECTIVE: To analyze the impact on human health of exposure to particulate matter emitted from burnings in the Brazilian Amazon region. METHODS: This was an ecological study using an environmental exposure indicator presented as the percentage of annual hours (AH%) of PM2.5 above 80 μg/m3. The outcome variables were the rates of hospitalization due to respiratory disease among children, the elderly and the intermediate age group, and due to childbirth. Data were obtained from the National Space Research Institute and the Ministry of Health for all of the microregions of the Brazilian Amazon region, for the years 2004 and 2005. Multiple regression models for the outcome variables in relation to the predictive variable AH% of PM2.5 above 80 μg/m3 were analyzed. The Human Development Index (HDI) and mean number of complete blood counts per 100 inhabitants in the Brazilian Amazon region were the control variables in the regression analyses. RESULTS: The association of the exposure indicator (AH%) was higher for the elderly than for other age groups (β = 0.10). For each 1% increase in the exposure indicator there was an increase of 8% in child hospitalization, 10% in hospitalization of the elderly, and 5% for the intermediate age group, even after controlling for HDI and mean number of complete blood counts. No association was found between the AH% and hospitalization due to childbirth. CONCLUSIONS: The indicator of atmospheric pollution showed an association with occurrences of respiratory diseases in the Brazilian Amazon region, especially in the more vulnerable age groups. This indicator may be used to assess the effects of forest burning on human health.
Resumo:
Composting is an important process of solid waste management and it can be used for treatment of a variety of different wastes (green waste, household waste, sewage sludge and more). This process aims to: 1. Reduce the volumes of waste and; 2. Create a valuable product which can be recycled as a soil amendment in agriculture and gardening. A natural self-heating process involving the biological degradation of organic matter under aerobic conditions. The handling of waste and compost is responsible for the release of airborne microorganisms and their compounds in the air. Possible contaminants: a) Dust; b) Mesophilic and thermophilic microorganisms; c) Volatile organic compounds; d) Endotoxins and mycotoxins…. Aim: assess exposure/contamination to: a) Volatile organic compounds (VOCs); b) Particulate matter (PM); c) Fungi. In a composting plant located in Lisbon. An additional goal was to identify the workplace with higher level of contamination. In a totally indoor composting plant. The composting operations consisted: 1º Waste already sorted is unloaded in a reception area; 2º Pretreatment - remove undesirable materials from the process (glass, rocks, plastics, metals…); 3º Anaerobic digestion; 4º Dehydration; 5º Open composting with forced aeration. All the process takes thirteen weeks.