51 resultados para PYRAZINE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pressure-driven orbital reordering in the quantum magnet [CuF2(H2O)2- (pyz)], (pyz = pyrazine), dramatically affects its magnetic exchange interactions. The crystal chemistry of this system is enriched with a new phase above 3 GPa, surprisingly concomitant with other polymorphs. Moreover, we discovered an unprecedented compound with a different stoichiometry, [(CuF2(H2O)2)2(pyz)], featuring magnetic bi-layers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The two crystalline donor-acceptor complexes showing hydrogen-bondings between bis(ethylenedithio) tetrathiofulvalene (BEDT-TTF) derivatives containing pyridine and pyrazine groups and 2,5-dichloro-3,6-dihydroxyl-1,4-benzoquinone (chloranilic acid) were prepared. X-ray structure analyses revealed that functional groups play an important role in constructing the unique crystal structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report here three examples of the reactivity of protic nucleophiles with diimine-type ligands in the presence of FeII salts. In the first case, the iron-promoted alcoholysis reaction of one nitrile group of the ligand 2,3-dicyano-5,6-bis(2-pyridyl)-pyrazine (L1) permitted the isolation of an stable E-imido−ester, [Fe(L1‘)2](CF3SO3)2 (1), which has been characterized by spectroscopic studies (IR, ES-MS, Mössbauer), elemental analysis, and crystallographically. Compound 1 consists of mononuclear octahedrally coordinated FeII complexes where the FeII ion is in its low-spin state. The iron-mediated nucleophilic attack of water to the asymmetric ligand 2,3-bis(2-pyridyl)pyrido[3,4-b]pyrazine (L2) has also been studied. In this context, the crystal structures of two hydration−oxidation FeIII products, [Fe(L2‘)2](ClO4)3·3CH3CN (2) and trans-[FeL2‘‘Cl2] (3), are described. Compounds 2 and 3 are both mononuclear FeIII complexes where the metals occupy octahedral positions. In principle, L2 is expected to coordinate to metal ions through its bipyridine-type units to form a five-membered ring; however, this is not the case in compounds 2 and 3. In 2, the ligand coordinates through its pyridines and through the hydroxyl group attached to the pyrazine imino carbon after hydration, that is, in an N,O,N tridentate manner. In compound 3, the ligand has suffered further transformations leading to a very stable diamido complex. In this case, the metal ion achieves its octahedral geometry by means of two pyridines, two amido N atoms, and two axial chlorine atoms. Magnetic susceptibility measurements confirmed the spin state of these two FeIII species:  compounds 2 and 3 are low-spin and high-spin, respectively.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The general goal of this thesis is correlating observable properties of organic and metal-organic materials with their ground-state electron density distribution. In a long-term view, we expect to develop empirical or semi-empirical approaches to predict materials properties from the electron density of their building blocks, thus allowing to rationally engineering molecular materials from their constituent subunits, such as their functional groups. In particular, we have focused on linear optical properties of naturally occurring amino acids and their organic and metal-organic derivatives, and on magnetic properties of metal-organic frameworks. For analysing the optical properties and the magnetic behaviour of the molecular or sub-molecular building blocks in materials, we mostly used the more traditional QTAIM partitioning scheme of the molecular or crystalline electron densities, however, we have also investigated a new approach, namely, X-ray Constrained Extremely Localized Molecular Orbitals (XC-ELMO), that can be used in future to extracted the electron densities of crystal subunits. With the purpose of rationally engineering linear optical materials, we have calculated atomic and functional group polarizabilities of amino acid molecules, their hydrogen-bonded aggregates and their metal-organic frameworks. This has enabled the identification of the most efficient functional groups, able to build-up larger electric susceptibilities in crystals, as well as the quantification of the role played by intermolecular interactions and coordinative bonds on modifying the polarizability of the isolated building blocks. Furthermore, we analysed the dependence of the polarizabilities on the one-electron basis set and the many-electron Hamiltonian. This is useful for selecting the most efficient level of theory to estimate susceptibilities of molecular-based materials. With the purpose of rationally design molecular magnetic materials, we have investigated the electron density distributions and the magnetism of two copper(II) pyrazine nitrate metal-organic polymers. High-resolution X-ray diffraction and DFT calculations were used to characterize the magnetic exchange pathways and to establish relationships between the electron densities and the exchange-coupling constants. Moreover, molecular orbital and spin-density analyses were employed to understand the role of different magnetic exchange mechanisms in determining the bulk magnetic behaviour of these materials. As anticipated, we have finally investigated a modified version of the X-ray constrained wavefunction technique, XC-ELMOs, that is not only a useful tool for determination and analysis of experimental electron densities, but also enables one to derive transferable molecular orbitals strictly localized on atoms, bonds or functional groups. In future, we expect to use XC-ELMOs to predict materials properties of large systems, currently challenging to calculate from first-principles, such as macromolecules or polymers. Here, we point out advantages, needs and pitfalls of the technique. This work fulfils, at least partially, the prerequisites to understand materials properties of organic and metal-organic materials from the perspective of the electron density distribution of their building blocks. Empirical or semi-empirical evaluation of optical or magnetic properties from a preconceived assembling of building blocks could be extremely important for rationally design new materials, a field where accurate but expensive first-principles calculations are generally not used. This research could impact the community in the fields of crystal engineering, supramolecular chemistry and, of course, electron density analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Os organismos marinhos constituem uma fonte potencial de metabólitos secundários biologicamente ativos. Neste contexto, os micro-organismos isolados de algas marinhas, dentre eles fungos endofíticos, representam alvos para a pesquisa de novas substâncias com potencial farmacológico pronunciado. Substâncias naturais provenientes de espécies de fungos associados às algas marinhas vêm sendo bastante utilizadas em formulações fotoprotetoras devido à ação antioxidante e ao potencial contra a radiação solar. Deste modo, o presente trabalho teve como objetivo a investigação biológica e química dos fungos endofíticos marinhos pertencentes à família Xylariaceae, o Annulohypoxylon stygium, o Cladosporium sp. e o Acremonium implicatum (Hypocreaceae). A princípio, foi realizado um screening para avaliar a absorção de luz ultravioleta na faixa do UVA e UVB pelos extratos obtidos em escala piloto destes fungos endofíticos associados às algas marinhas. O extrato do fungo A. stygium apresentou intensa absorção na região do UV, mostrando-se promissor para a produção de metabólitos secundários com ação fotoprotetora. Além do ensaio proposto, foi realizada a avaliação do potencial antibacteriano e antifúngico da espécie A. stygium. O estudo químico em escala ampliada deste fungo proporcionou o isolamento e identificação de uma substância inédita da classe derivada da 2,5- dicetopiperazina, 3-benzilideno-2-metil-hexahidro-pirrolo [1,2-?] pirazina-1,4-diona (Sf3), e além desta, foram isolados mais quatro metabólitos como, os diasteroisômeros 1-fenil-1,2- propanediol (Sd2) e 1-fenil-1,2-propanediol (Sd3), 1,3-benzodioxole-5-metanol (Sc1), 1,2- propanodiol-1-(1,3-benzodioxol-5-il) (Se1). Ainda foi possível a desreplicação de substâncias via cromatografia gasosa acoplada à espectrometria de massas (CG-EM), entre elas o ácido palmítico, palmitato de metila, ácido metil linoléico, ácido oléico, álcool benzílico e o piperonal. Quanto ao estudo da atividade biológica, não foi observado potencial antibacteriano e antifúngico para os extratos e frações do fungo. Entretanto, notouse um potencial como fotoprotetor in vitro para as frações n-Hexano/AcOEt (2:3) e n- Hexano/AcOEt (1:4) obtidas a partir do extrato do cultivo de 28 dias do fungo A. stygium, extraído com solventes diclorometano/metanol (CH2Cl2/MeOH 2:1) e para a substância (Sf3) isolada do mesmo. Desta forma, o estudo químico e biológico do fungo Annulohypoxylon stygium demonstrou potencial para a produção de metabólitos secundários com atividade fotoprotetora, visto que uma estrutura inédita com esta atividade foi isolada e identificada como produto natural.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tuberculosis is one of the most devastating diseases in the world primarily due to several decades of neglect and an emergence of multidrug-resitance strains (MDR) of M. tuberculosis together with the increased incidence of disseminated infections produced by other mycobacterium in AIDS patients. This has prompted the search for new antimycobacterial drugs. A series of pyridine-2-, pyridine-3-, pyridine-4-, pyrazine and quinoline-2-carboxamidrazone derivatives and new classes of carboxamidrazone were prepared in an automated fashion and by traditional synthesis. Over nine hundred synthesized compounds were screened for their anti mycobacterial activity against M. fortutium (NGTG 10394) as a surrogate for M. tuberculosis. The new classes of amidrazones were also screened against tuberculosis H37 Rv and antimicrobial activities against various bacteria. Fifteen tested compounds were found to provide 90-100% inhibition of mycobacterium growth of M. tuberculosis H37 Rv in the primary screen at 6.25 μg mL-1. The most active compound in the carboxamidrazone amide series had an MIG value of 0.1-2 μg mL-1 against M. fortutium. The enzyme dihydrofolate reductase (DHFR) has been a drug-design target for decades. Blocking of the enzymatic activity of DHFR is a key element in the treatment of many diseases, including cancer, bacterial and protozoal infection. The x-ray structure of DHFR from M. tuberculosis and human DHFR were found to have differences in substrate binding site. The presence of glycerol molecule in the Xray structure from M. tuberculosis DHFR provided opportunity to design new antifolates. The new antifolates described herein were designed to retain the pharmcophore of pyrimethamine (2,4- diamino-5(4-chlorophenyl)-6-ethylpyrimidine), but encompassing a range of polar groups that might interact with the M. tuberculosis DHFR glycerol binding pockets. Finally, the research described in this thesis contributes to the preparation of molecularly imprinted polymers for the recognition of 2,4-diaminopyrimidine for the binding the target. The formation of hydrogen bonding between the model functional monomer 5-(4-tert-butyl-benzylidene)-pyrimidine-2,4,6-trione and 2,4-diaminopyrimidine in the pre-polymerisation stage was verified by 1H-NMR studies. Having proven that 2,4-diaminopyrimidine interacts strongly with the model 5-(4-tert-butylbenzylidene)- pyrimidine-2,4,6-trione, 2,4-diaminopyrimidine-imprinted polymers were prepared using a novel cyclobarbital derived functional monomer, acrylic acid 4-(2,4,6-trioxo-tetrahydro-pyrimidin-5- ylidenemethyl)phenyl ester, capable of multiple hydrogen bond formation with the 2,4- diaminopyrimidine. The recognition property of the respective polymers toward the template and other test compounds was evaluated by fluorescence. The results demonstrate that the polymers showed dose dependent enhancement of fluorescence emissions. In addition, the results also indicate that synthesized MIPs have higher 2,4-diaminopyrimidine binding ability as compared with corresponding non-imprinting polymers.