984 resultados para POLYAMIDE-1010
Resumo:
Compatibilized blends of polypropylene (PP) and polyamide-12 (PA12) as a second component were obtained by direct injection molding having first added 20% maleic anhydride-modified copolymer (PP-g-MA) to the PP, which produced partially grafted PP (gPP). A nucleating effect of the PA12 took place on the cooling crystallization of the gPP, and a second crystallization peak of the gPP appeared in the PA12-rich blends, indicating changes in the crystalline morphology. There was a slight drop in the PA12 crystallinity of the compatible blends, whereas the crystallinity of the gPP increased significantly in the PA12-rich blends. The overall reduction in the dispersed phase particle size together with the clear increase in ductility when gPP was used instead of PP proved that compatibilization occurred. Young's modulus of the blends showed synergistic behavior. This is proposed to be both due to a change in the crystalline morphology of the blends on the one hand and, on the other, in the PA12-rich blends, to the clear increase in the crystallinity of the gPP phase, which may, in turn, have been responsible for the increase in its continuity and its contribution to the modulus.
Resumo:
尼龙1010是我国特有的工程塑料。但对它的结构与性能的基础研究并不多见。迄今为止,许多聚酰胺的晶胞参数已被测定,并比较准确地计算出它们的结晶密度ρ_c。可是,尚未见到过有关尼龙1010的ρ_c的报道。此外,结晶高聚物的平衡熔融温度T°_m和平衡熔融热ΔH°_m是非常重要的热力学参数,尤其是后者更是用量热法计算结晶度的基准。早在50年代,Flory等对它的T°_m和ΔH°_m进行了许多研究,由于受当时历史条件限制,这些数值的准确性不高,不能当作平衡状态的数值。尼龙1010经γ-射线辐照后,有可能提高它的使用温度,扩大它的应用范围和领域。但至今未见到过大剂量下γ-辐照尼龙1010及其添加强化交联剂BMI的γ辐照产物的热学性能和结晶过程的研究。随着科学技术的发展,目前迫切需要准确的尼龙1010的ρ_c、T°_m、ΔH°_m的数值,以及大剂量下γ-辐照产物的热学性能和结晶过程的详细研究,以便更合理地开发和利用这一材料为四化建设服务。本文用DSC差示扫描量热仪、红外光谱仪、广角X-射线衍射仪以及TMS热机械仪等研究手段,准确地测定了尼龙1010的平衡热力学参数,并对尼龙1010及其添加强化交联剂BMI的γ-辐照产物的热学性能和结晶过程进行了详细的研究。用红外吸光度-密度外推法求得尼龙1010的ρ_a(非晶密度)= 1.003 ρ_c = 1.098g/cm~3。1.098g/cm~3与用X-射线衍射法求得的1.135g/cm~3比较,认为后者更为合理。用介稳态结晶试样的ΔH_m-(V-bar)_(sp)的线性关系,求得尼龙1010的平衡熔融热。ΔH°_m = 244.0J/g。企图用常用的Hoffman Tm-Tc外推法来确定尼龙1010的平衡熔融温度T°_m,但未能成功,并指出其升温过程中重结晶异常迅速是此法行不通的主要原因。用Kamide提出的双重外推法成功地求得尼龙1010的平衡熔融温度:T°_m = 487 K = 214 ℃通过详细地研究尼龙1010及其添加强化并联剂BMI的γ辐照产物的热学性能,发现强化交联剂BMI的加入,使尼龙1010大分子的交联更容易,但也使得空间网络较松散;同时γ辐照尼龙1010在再次等速升温过程中出现冷结晶峰是辐照产物中存在可结晶部分、交联网络阻碍可结晶部分结晶两者共同作用的结果。交联网络使可结晶部分在降温过程中来不及结晶,当再次升温到玻璃化转变温度以上时,链段冻结被解除,可结晶的分子链段进行有序排列而结晶,导致冷结晶峰的出现。冷结晶峰的强度和位置与辐照产物中可结晶部分的多少、交联网络的大小即相邻交联点之间的分子量Mc的大小、交联网络的松散程度以及试样的热历史都有关。选择适当的等温结晶温度,用DSC-2C型差示扫描量热仪研究了尼龙1010及其γ-辐照产物和添加强化交联剂BMI的γ-辐照产物的等温结晶过程。用DSC-2C 3600 TADS计算机自带的部分面积程序进行动力学数据处理。通过仔细的等温结晶动力学研究,发现γ辐照尼龙10104 Avrami指数n几乎不受辐照剂量R和强化交联剂BMI的影响,且一般为3.75,这说明尼龙1010及其γ辐照产物的结晶过程接近于均相三维成核。随着辐照剂量R和强化交联剂BMI含量的增大,折迭链表面自由能σe值增大,σe值的分布可能变宽,σe值的这种变化可以归因于辐照剂量R和强化交联剂BMI的含量增大时,交联网络增多,交联密度增大,Mc值的分布变宽,链尾和小链圈的数目增多,活动性减小,同时链尾也增长,结果导致σe(链尾、链圈)增大,从而σe值变大,σe值的分布可能变宽。σe值的这种变化也正是过冷度增大、拖尾现象严重、总的动力学速率常数Kn和结晶速率t_(0.5)~(-1)变小的总根源。由此可见,对于分子量不同或分子结构有差别的同一种结晶高聚物来说,σe值可以作为衡量结晶能力大小的定量标准。
Resumo:
Three novel of isomeric tetra-functional biphenyl acid chloride: 3,3',5,5'-biphenyl tetraacyl chloride (mm-BTEC), 2,2',4,4'-biphenyl tetraacyl chloride (om-BTEC), and 2,2',5,5'-biphenyl tetraacyl chloride (op-BTEC) were synthesized, and used as new monomers for the preparation of the thin film composite (TFC) reverse osmosis (RO) membranes through interfacial polymerization with m-phenylenediamine (MPDA). The results of membrane performance test showed that membranes prepared from om-BTEC and op-BTEC had higher flux at the expanse of rejection compared with membranes prepared from mm-BTEC.
Resumo:
For polyamide used in reverse osmosis (RO) membranes, the content of pendant acid groups is critical to its performance. In this work, FTIR was used to analyze the acid contents in the polyamide films prepared via interfacial polymerization of trimesic acid trichloride (TMC) in hexane and 1,3-phenylenediamine (MPDA) in water, and the effects of reaction conditions, including monomer concentrations, time, and temperature, were studied. It was found that more pendant acid groups are present in the polyramide film at higher TMC concentrations or lower MPDA concentrations, and longer reaction times and lower temperatures also favor the formation of the free acids. These results can be explained by the monomer diffusion in the interfacial polymerization process. This work may help the design and fabrication of RO membranes with different hydrophilicity and target performance.
Resumo:
Two novel of tri- and tetra-functional biphenyl acid chloride: 3,4',5-biphenyl triacyl chloride (BTRC) and 3,3',5,5'-biphenyl tetraacyl chloride (BTEC), were synthesized, and used as new monomers for the preparations of the thin film composite (TFC) reverse osmosis (RO) membranes. The TFC RO membranes were prepared on a polysulfone supporting film through interfacial polymerization with the two new monomers and m-phenylenediamine (MPD). The membranes were characterized for the permeation properties, chemical composition, d-space between polymer chains, hydrophilicity, membrane morphology including top surface and cross-section. Permeation experiment was employed to evaluate the membranes performance including salt rejection and water flux. The surface structure and chemical composition of membranes were analyzed by attenuated total reflectance infrared (ATR-IR) and X-ray photoelectronic spectroscopy (XPS). The results revealed that the active layer of membranes was composed of highly cross-linked aromatic polyamide with the functional acylamide (-CONH-) bonds. The TFC membranes prepared from biphenyl acid chloride exhibit higher salt rejection compared with that prepared from trimesoyl chloride (TMC) at the expanse of some flux.
Resumo:
Polyamide- 6(PA 6)/polytetrafluoroethylene is studied as a potential gate dielectric for flexible organic thin film transistors. The same method used for the formation of organic semiconductor and gate dielectric films greatly simplifies the fabrication process of devices. The fabricated transistors show good electrical characteristics. Ambipolar behaviour is observed even when the device is operated in air.
Resumo:
Non-isothermal crystallisation kinetics of a polyamide 6/mesoporous silica nanocomposite (PA6-MS) has been investigated by differential scanning calorimetry (DSC) at different cooling rates. Mandelkern, Jeziorny-Ziabicki and Ozawa methods were applied to describe this crystallisation process. The analyses show that the mesoporous silica particles act as nucleating agents in the composite and that the Avrami exponent n varies from 3.0 to 4.6. The addition of mesoporous silica influenced the mechanism of nucleation and the growth of polyamide 6 (PA6) crystallites.
Resumo:
Organically modified montmorillonites (OMMTs) by octadecylammonium chloride with two adsorption levels were dispersed in polyamide 12 (PA12) matrices with two molecular weights for different melt mixing times in order to investigate morphology evolutions and factors influencing fabrication of PA12 nanocomposites. Different adsorption levels of the modifier in the OMMTs provide different environments for diffusion of polymer chains and different attractions between MMT layers. Wide-angle X-ray diffraction (WAXD), transmission electron microscope (TEM) and gas permeability were used to characterize morphologies of the nanocomposites. Both OMMTs can be exfoliated in the PA12 matrix with higher molecular weight, but only OMMT with lower adsorption level can be exfoliated in the PA12 matrix with lower molecular weight. It was attributed to the differences in the levels of shear stress and molecular diffusion in the nanocomposites. The exfoliation of OMMT platelets results from a combination of molecular diffusion and shear. After intercalation of PA12 into interlayer of OMMT in the initial period of mixing, further dispersion of OMMTs in PA12 matrices is controlled by a slippage process of MMT layers during fabricating PA12 nanocomposites with exfoliated structure.
Resumo:
Three kinds of organically modified Na+-montmorillonites (OMMTs), including two kinds of octadecylammonium modified montmorillonite with different contents of octadecylammonium and a kind of sodium dodecylsulfonate (SDSo) modified montmorillonite, were used to prepare polyamide 12 (PA12)/OMMT nanocomposites. Effects of the modifiers on degradation and fire retardancy of PA12/OMMT nanocomposites were investigated. Acid sites formed in cationic surfactant modified MMT via Hoffman decomposition could accelerate degradation of PA12 at high temperature. However, catalytic effect of the acid sites on carbonization of the degradation products promoted char barrier formation, which reduced heat release rate (HRR). Higher content of cationic surfactant in OMMT is beneficial to fire retardancy of PA12 nanocomposites and the dispersion states of OMMT have assistant effects. In contrast, Na+-montmorillonite (Na-MMT) and anionic surfactant modified MMT (a-MMT) could not form acid sites on the MMT layers; in this case, fire retardancy of PA12/Na-MMT appears to have no improvement and PA12/a-MMT appears to have limited improvement.
Resumo:
The crystallization behavior and morphology of nonreactive and reactive melt-mixed blends of polypropylene (PP) and polyamide (PA12; as the dispersed phase) were investigated. It Was found that the crystallization behavior and the size of the PA12 particles were dependent on the content of the compatibilizer (maleic anhydride-modified polypropylene) because an in situ reaction occurred between the maleic anhydride groups of the compatibilizer and the amide end groups of PA12. When the amount of compatibilizer was more than 4%, the PA12 did not crystallize at temperatures typical for bulk crystallization. These finely dispersed PA12 particles crystallized co-incidently with the 1313 phase. The changes in domain size with compatibilizer content were consistent with Wu's theory. These investigations showed that crystallization of the dispersed phase Could not be explained solely by the size of the dispersion. The interfacial tension between the polymeric components in the blends may yield information on the fractionation of crystallization.