280 resultados para PHRYNOSOMATID LIZARDS
Resumo:
Different components of complex integrated systems may be specialized for different functions, and thus the selective pressures acting on the system as a whole may be conflicting and can ultimately constrain organismal performance and evolution. The vertebrate cranial system is one of the most striking examples of a complex system with several possible functions, being associated to activities as different as locomotion, prey capture, display and defensive behaviours. Therefore, selective pressures on the cranial system as a whole are possibly complex and may be conflicting. The present study focuses on the influence of potentially conflicting selective pressures (diet vs. locomotion) on the evolution of head shape in Tropidurinae lizards. For example, the expected adaptations leading to flat heads and bodies in species living on vertical structures may conflict with the need for improved bite performance associated with the inclusion of hard or tough prey into the diet, a common phenomenon in Tropidurinae lizards. Body size and six variables describing head shape were quantified in preserved specimens of 23 species, and information on diet and substrate usage was obtained from the literature. No phylogenetic signal was observed in the morphological data at any branch length tested, suggesting adaptive evolution of head shape in Tropidurinae. This pattern was confirmed by both factor analysis and independent contrast analysis, which suggested adaptive co-variation between the head shape and the inclusion of hard prey into the diet. In contrast to our expectations, habitat use did not constrain or drive head shape evolution in the group.
Resumo:
This study presented data on helminth fauna of two gecko lizards, Hemidactylus agrius and Lygodactylus klugei, from Caatinga biome in northeastern Brazil. It was found four helminth species parasitizing H. agrius, cistacanth of Centrorhynchidae (Acanthocephala) and the nematodes Physalopteridae (larvae), Parapharyngodon alvarengai (Pharyngodonidae) and Skrjabinelazia sp. (Seuratidade). The host Lygodactylus klugei presented two helminth species, one individual of Mesocoelium monas (Trematoda: Mesocoeliidae) in the small intestine and one encysted larvae of Physalopteridae (Nematoda: Physalopteridae) attached at stomach wall. The lizard species showed a low prevalence and low richness of helminths. Moreover, H. agrius presented a low intensity of infection. The foraging mode, arboreal habit and a restricted composition of diet could favoring the low prevalence, low infection rates and low richness of helminths found in these geckonid host species.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Cytogenetic investigations based on conventional and differential staining analysis (C-and replication R-banding and Ag-staining) were carried out on eight specimens of Phyllopezus periosus, 17 of P. pollicaris pollicaris, and one of P. pollicaris przewalskii collected from different localities of Brazil. P. periosus and P. p. pollicaris share the same diploid number of 2n = 40 chromosomes, and their karyotypes are very distinctive regarding to the number of biarmed and uniarmed chromosomes. After careful side-by-side comparison of R-banded chromosomes in both taxa, pronounced homology between, at least, eight pairs was revealed. The R-banding patterns allowed us to postulate that karyotype differentiation could be due to pericentric inversion events. P. p. przewalskii (2n = 38) exhibited a very similar karyotype to that found in P. p. pollicaris, except for the presence of one metacentric pair, which probably resulted from a Robertsonian rearrangement. Single and multiple pairs of NOR-bearing chromosomes, showing variation in number and location, were detected among the three forms of Phyllopezus. Similar C-banding patterns were found in P. periosus and P. p. pollicaris. Sex chromosomes were not positively identified.
Resumo:
The tegus increase in body mass after hatching until early autumn, when the energy intake becomes gradually reduced. Resting rates of oxygen consumption in winter drop to 20% of the values in the active season (Vo(2)=0.0636 ml g(-1) h(-1)) and are nearly temperature insensitive over the range of 17-25degreesC (Q(10)=1.55). During dormancy, plasma glucose levels are 60% lower than those in active animals, while total protein, total lipids and beta-hydroxybutyrate are elevated by 24%, 43% and 113%, respectively. In addition, a significant depletion of liver carbohydrate (50%) and of fat deposited in the visceral fat bodies (24%) and in the tail (25%) and a slight loss of skeletal muscle protein (14%) were measured halfway through the inactive period. Otherwise, glycogen content is increased 4-fold in the brain and 2.3-fold in the heart of dormant lizards, declining by the onset of arousal. During early arousal, the young tegus are still anorexic, although Vo(2) is significantly greater than winter rates. The fat deposits analysed are further reduced (62% and 45%, respectively) and there is a large decrease in tail muscle protein (50%) together with a significant increase in glycogen (2-3-fold) and an increase in plasma glucose (40%), which suggests a role for gluconeogenesis as a supplementary energy source in arousing animals. No change is detectable in citrate synthase activity, but beta-hydroxyacyl CoA dehydrogenase activities are strongly affected by season, reaching a Mold and 5-fold increase in the liver tissue of winter and arousing animals, respectively, and becoming reduced by half in skeletal muscle and heart of winter animals compared with late fall or spring active individuals. From hatching to late autumn, the increase of the fat body mass relatively to body mass is disproportionate (b=1.44), and the mass exponent changes significantly to close to 1.0 during the fasting period. The concomitant shift in the Vo(2) mass exponent in early autumn (b=0.75) to values significantly greater than 1.0 in late autumn and during winter dormancy indicates an allometric effect on the degree of metabolic depression related to the size of the fat stores and suggests greater energy conservation in the smaller young.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)