984 resultados para Oxidative pentose phosphate pathway
Resumo:
AraL from Bacillus subtilis is a member of the ubiquitous haloalkanoate dehalogenase, HAD, superfamily. The araL gene has been cloned, over-expressed in Escherichia coli and its product purified to homogeneity. The enzyme displays phosphatase activity, which is optimal at neutral pH (7.0) and 65 °C. Substrate screening and kinetic analysis showed AraL to have low specificity and catalytic activity towards several sugar phosphates, which are metabolic intermediates of the glycolytic and pentose phosphate pathways. Based on substrate specificity and gene context within the arabinose metabolic operon, a putative physiological role of AraL in detoxification of accidental accumulation of phosphorylated metabolites has been proposed. The ability of AraL to catabolise several related secondary metabolites requires regulation at the genetic level. Here, by site- directed mutagenesis, we show that AraL production is regulated by a structure in the translation initiation region of the mRNA, which most probably blocks access to the ribosome-binding site, preventing protein synthesis. Members of HAD subfamily IIA and IIB are characterised by a broad-range and overlapping specificity that anticipated the need for regulation at the genetic level. In this study we provide evidence for the existence of a genetic regulatory mechanism controlling AraL production.
Resumo:
? Arbuscular mycorrhizal fungi colonize the roots of most monocotyledons and dicotyledons despite their different root architecture and cell patterning. Among the cereal hosts of arbuscular mycorrhizal fungi, Oryza sativa (rice) possesses a peculiar root system composed of three different types of roots: crown roots; large lateral roots; and fine lateral roots. Characteristic is the constitutive formation of aerenchyma in crown roots and large lateral roots and the absence of cortex from fine lateral roots. Here, we assessed the distribution of colonization by Glomus intraradices within this root system and determined its effect on root system architecture. ? Large lateral roots are preferentially colonized, and fine lateral roots are immune to arbuscular mycorrhizal colonization. Fungal preference for large lateral roots also occurred in sym mutants that block colonization of the root beyond rhizodermal penetration. ? Initiation of large lateral roots is significantly induced by G. intraradices colonization and does not require a functional common symbiosis signaling pathway from which some components are known to be needed for symbiosis-mediated lateral root induction in Medicago truncatula. ? Our results suggest variation of symbiotic properties among the different rice root-types and induction of the preferred tissue by arbuscular mycorrhizal fungi. Furthermore, signaling for arbuscular mycorrhizal-elicited alterations of the root system differs between rice and M. truncatula.
Resumo:
The development of new drugs is one strategy for malaria control. Biochemical pathways localised in the apicoplast of the parasite, such as the synthesis of isoprenic precursors, are excellent targets because they are different or absent in the human host. Isoprenoids are a large and highly diverse group of natural products with many functions and their synthesis is essential for the parasite's survival. During the last few years, the genes, enzymes, intermediates and mechanisms of this biosynthetic route have been elucidated. In this review, we comment on some aspects of the methylerythritol phosphate pathway and discuss the presence of diverse isoprenic products such as dolichol, ubiquinone, carotenoids, menaquinone and isoprenylated proteins, which are biosynthesised during the intraerythrocytic stages of Plasmodium falciparum.
Resumo:
Development of cardiac hypertrophy and progression to heart failure entails profound changes in myocardial metabolism, characterized by a switch from fatty acid utilization to glycolysis and lipid accumulation. We report that hypoxia-inducible factor (HIF)1alpha and PPARgamma, key mediators of glycolysis and lipid anabolism, respectively, are jointly upregulated in hypertrophic cardiomyopathy and cooperate to mediate key changes in cardiac metabolism. In response to pathologic stress, HIF1alpha activates glycolytic genes and PPARgamma, whose product, in turn, activates fatty acid uptake and glycerolipid biosynthesis genes. These changes result in increased glycolytic flux and glucose-to-lipid conversion via the glycerol-3-phosphate pathway, apoptosis, and contractile dysfunction. Ventricular deletion of Hif1alpha in mice prevents hypertrophy-induced PPARgamma activation, the consequent metabolic reprogramming, and contractile dysfunction. We propose a model in which activation of the HIF1alpha-PPARgamma axis by pathologic stress underlies key changes in cell metabolism that are characteristic of and contribute to common forms of heart disease.
Resumo:
Introducción. Los pintores de vehículos automotores están expuestos a solventes puros o mezclas de estos, los cuales se han asociado con efectos neurológicos y mutacarcinogénicos. Materiales y Métodos. Se realizó un estudio descriptivo de corte transversal para caracterizar las condiciones de salud y trabajo de individuos expuestos a solventes orgánicos en talleres de lámina y pintura en Bogotá. Se comparó un grupo de expuestos a solventes orgánicos con un grupo no expuestos. Se determinaron concentraciones de benceno, tolueno y xileno (BTX) en aire, se aplicó una encuesta individual y se midieron en orina, los ácidos fenil mercaptúrico, hipúrico, orto-para metilhipúrico como metabolitos de benceno, tolueno y xileno. Los resultados de las mediciones y de la encuesta se correlacionaron para establecer el panorama de exposición. Resultados: hubo diferencias estadísticamente significativas entre la población expuesta y la población no expuesta a solventes (p = 0,00) para los tres metabolitos de BTX. Se encontraron correlaciones positivas entre el tolueno en aire y ácido hipúrico en orina de los expuestos, (Spearman de 0,82) y entre el xileno en aire y el ácido o-metilhipúrico (Spearman de 0,76). Se encontraron valores de ácido hipúrico por encima de los límites permisibles en 11 2 trabajadores y de ácido p-metilhipúrico en 8 de ellos. No hubo valores para ácido fenilmercapturico fuera de límite. Discusión: los pintores de carros se encuentran expuestos a niveles altos de solventes orgánicos en sus sitios de trabajo y no cuentan con condiciones adecuadas de higiene y seguridad industrial para realizar sus labores.
Resumo:
The biosynthesis of (2S)-2-methyl-2-(4'-methyl-3-pentenyl)-8-(3-methyl-2-butenyl)-2H-1-benzopyran-6-carboxylic acid (gaudichaudianic acid), the major metabolite in leaves and roots of Piper gaudichaudianum Kunth (Piperaceae), has been investigated employing [1(-13) C]-D-glucose as precursor. The labelling pattern in the isolated gaudichaudianic acid was determined by quantitative 13 C NMR spectroscopy analysis and was consistent with involvement of both mevalonic acid and 2-C-methyl-D-erythritol-4-phosphate pathways in the formation of the dimethylallyl- and geranyl-derived moieties. The results confirmed that both plastidic and cytoplasmic pathways are able to provide isopentenyl diphosphate units for prenylation of p-hydroxybenzoic acid. (c) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Metabolic studies involving the incorporation of [1-13C]-D- glucose into intact leaves of Piper aduncum (Piperaceae) have indicated that both the mevalonate (MVA) and the pyruvate-triose (MEP) non-mevalonate pathways are implicated in the biosynthesis of isoprene moieties present in methyl 2,2-dimethyl-2H-1-chromene-6-carboxylate (1) and methyl 2,2-dimethyl-8- (3′-methyl-2′-butenyl)-2H-1-chromene-6-carboxylate (2). The pattern of incorporation of label from [1-13C]-D-glucose into these chromenes was determined by quantitative 13C NMR spectroscopy. The results confirmed that biosynthetic compartment of 1 and 2 could either be the plastid and/ or the cytosol or, possibly, an additional compartment such as the plastid inter-membrane space. ©2007 Sociedade Brasileira de Química.
Resumo:
Es wurde ein genomischer DNA-Array der Modellpflanze Arabidopsis thaliana mit einer 13.800 EST-Klone umfassenden cDNA-Bibliothek entwickelt und in der Genexpressionsanalyse der pflanzlichen Pathogenabwehr eingesetzt. Mittels PCR-Amplifikation sind 13.000 PCR-Produkte der cDNA-Fragmente hergestellt worden, mit denen 66 genomische Arabidopsis-Arrays auf Nylon und Polypropylen als Trägermaterial hergestellt werden konnten. Die Validierung mit Fluoreszenz- und Radiaktivhybridisierung sowie der Vergleich von drei Normalisierungsmethoden führte zu reproduzierbaren Ergebnissen bei hohem Korrelationskoeffizienten. Die etablierte DNA-Array-Technologie wurde zur Genexpressionsanalyse der pathogeninduzierten Abwehrmechanismen der Pflanze Arabidopsis thaliana in den ersten 24 Stunden nach Infektion mit dem avirulenten Bakterium Pseudomonas syringae pv. tomato eingesetzt. In einer Auswahl von 75 Genen der Stoffwechselwege Glycolyse, Citrat-Cyclus, Pentosephosphat-Cyclus und Glyoxylatmetabolismus konnte für 25 % der Gene, im Shikimat-, Tryptophan- und Phenylpropanoidsyntheseweg für 60 % der Gene eine erhöhte Transkriptionsrate nachgewiesen werden. Die Ergebnisse dieser Arbeit stimmen mit experimentellen Daten verschiedener unabhängiger Studien zur pflanzlichen Pathogenantwort überein. Darüberhinaus sind erstmals Transkriptionsprofile von bisher auf Transkriptionsebene nicht untersuchten Genen erstellt worden. Diese Ergebnisse bestätigen die transkriptionelle Aktivierung ganzer Stoffwechselwege und gewähren erstmals einen Einblick in die koordinierte differentielle Transkription ganzer Stoffwechselwege während der Pathogenabwehr.
Resumo:
This report presents the proceedings of the Biochemical Engineering Symposium held at Kansas State University, April 28, 1973. Since a number of the contributions will be published in detail elsewhere, only brief summaries of each contribution are included here. Requests for additional information on projects conducted at The University of Nebraska should be directed to Dr. Peter J. Reilly, and those at Kansas State University to the editors. ContentsKenneth J. Jacobson, Andrew H.C. Chan, and Raymond C. Eliason, "Properties and Utilization of Small Particulates in Cattle Manure" Cady R. Engler and James S. Yohn, "Protein from Manure" Robert J. Williams, "Kinetics of Sucrose Inversion Using Invertase Immobilized on Hollow Fibers of Cellulose Acetate" David F. Aldis and Thomas A. Carlisle, "Study of a Triiodide-Resin Complex Disinfection System" John C. Heydweiller, "Modeling and Analysis of Symbiotic Growth" Kenneth J. Jacobson, "Synchronized Growth of the Blue Green Alga Microcystis aeruginosa" Clarence C. Y. Ron arui Lincoln L. S. Yang, "Computer Modeling of the Reductive Pentose Phosphate Cycle" Ming-ching T. Kuo, "Application of a Parallel Biochemical Oxidation Kinetic Model to the Design of an Activated Sludge System Including a Primary Clarifier" Prakash N. Mishra, "Optimal Synthesis of Water Renovation Systems"
Resumo:
Glioblastoma multiforme (GBM) is the most common and aggressive primary brain tumor with poor prognosis due in part to drug resistance and high incidence of tumor recurrence. The drug resistant and cancer recurrence phenotype may be ascribed to the presence of glioblastoma stem cells (GSCs), which seem to reside in special stem-cell niches in vivo and require special culture conditions including certain growth factors and serum-free medium to maintain their stemness in vitro. Exposure of GSCs to fetal bovine serum (FBS) can cause their differentiation, the underlying mechanism of which remains unknown. Reactive oxygen species (ROS) play an important role in normal stem cell differentiation, but their role in affecting cancer stem cell fate remains unclear. Whether the metabolic characteristics of GSCs are different from other glioblastoma cells and can be targeted are also unknown. In this study, we used several stem-like glioblastoma cell lines derived from clinical tissues by typical neurosphere culture system or orthotopic xenografts, and showed that addition of fetal bovine serum to the medium induced an increase of ROS, leading to aberrant differentiation and decreases of stem cell markers such as CD133. We found that exposure of GSCs to serum induced their differentiation through activation of mitochondrial respiration, leading to an increase in superoxide (O2-) generation and a profound ROS stress response manifested by upregulation of oxidative stress response pathway. This increase in mitochondrial ROS led to a down-regulation of molecules including SOX2, and Olig2, and Notch1 that are important for stem cell function and an upregulation of mitochondrial superoxide dismutase SOD2 that converts O2- to H2O2. Neutralization of ROS by antioxidant N-acetyl-cysteine in the serum-treated GSCs suppressed the increase of superoxide and partially rescued the expression of SOX2, Olig2, and Notch1, and prevented the serum-induced differentiation phenotype. Additionally, GSCs showed high dependence on glycolysis for energy production. The combination of a glycolytic inhibitor 3-BrOP and a chemotherapeutic agent BCNU depleted cellular ATP and inhibited the repair of BCNU-induced DNA damage, achieving strikingly synergistic killing effects in drug resistant GSCs. This study uncovers the metabolic properties of glioblastoma stem cells and suggests that mitochondrial function and cellular redox status may profoundly affect the fates of glioblastoma stem cells via a ROS-mediated mechanism, and that the active glycolytic metabolism in cancer stem cells may provide a biochemical basis for developing novel therapeutic strategies to effectively eliminate GSCs.
Resumo:
It has been suggested that phosphate binders may reduce the inflammatory state of hemodialysis (HD) patients. However, it is not clear whether it has any effect on oxidative stress. The objective of this study was to evaluate the effect of sevelamer hydrochloride (SH) and calcium acetate (CA) on oxidative stress and inflammation markers in HD patients. Hemodialysis patients were randomly assigned to therapy with SH (n=17) or CA (n=14) for 1 year. Before the initiation of therapy (baseline) and at 12 months, we measured in vitro reactive oxygen species (ROS) production by stimulated and unstimulated polymorphonuclear neutrophils and serum levels of tumor necrosis factor alpha, interleukin-10, C-reactive protein, and albumin. There was a significant reduction of spontaneous ROS production in both groups after 12 months of therapy. There was a significant decrease of Staphylococcus aureus stimulated ROS production in the SH group. There was a significant increase in albumin serum levels only in the SH group. In the SH group, there was also a decrease in the serum levels of tumor necrosis factor alpha and C-reactive protein. Our results suggest that compared with CA treatment, SH may lead to a reduction in oxidative stress and inflammation. Therefore, it is possible that phosphate binders exert pleiotropic effects on oxidative stress and inflammation, which could contribute toward decreasing endothelial injury in patients in HD.
Resumo:
The authors have standardized methods for evaluation of the activity of the glucose-6-phosphate dehydrogenase and of glutathione reductase. The general principle of the first method was based on methemoglobin formation by sodium nitrite followed by stimulation of the glucose-6-phosphate dehydrogenase with methylene blue. Forty six adults (23 males and 23 females) were studied. Subjects were not G6PD deficient and were aged 20 to 30 years. The results showed that methemoglobin reduction by methylene blue was 154.40 and 139.90 mg/min (p<0.05) for males and females, respectively, in whole blood, and 221.10 and 207.85 mg/min (n.s.), respectively, in washed red cells. These data showed that using washed red cells and 0.7g% sodium nitrite concentration produced no differences between sexes and also shortened reading time for the residual amount of methemoglobin to 90 minutes. Glutathione reductase activity was evaluated on the basis of the fact that cystamine (a thiol agent) binds to the SH groups of hemoglobin, forming complexes. These complexes are reversed by the action of glutathione reductase, with methemoglobin reduction occurring simultaneously with this reaction. Thirty two adults (16 males and 16 females) were studied. Subjects were not G6PD deficient and were aged 20 to 30 years. Methemoglobin reduction by cystamine was 81.27 and 91.13 mg/min (p<0.01) for males and females, respectively. These data showed that using washed red cells and 0.1 M cystamine concentration permits a reading of the residual amount of methemoglobin at 180 minutes of incubation. Glutathione reductase activity was evaluated by methemoglobin reduction by cystamine in 14 females before and after treatment with 10 mg riboflavin per day for 8 days. The results were 73.69 and 94.26 jug/min (p<0.01) before and after treatment, showing that riboflavin treatment increase glutathione reductase activity even in normal individuals. Three Black G6PD-deficient individuals (2 males and 1 female) were also studied. The G6PD and glutathione reductase were partially activated, the change being more intense in males. On the basis of race and of the laboratory characteristics observed, it is possible to suggest that the G6PD deficiency of these individuals is of the African type and that the female is heterozygous for this deficiency. Analysis of the results as a whole permitted us to conclude that the methods proposed here were efficient for evaluating the activity of the glucose-6-phosphate dehydrogenase and of glutathione reductase. The latter is dependent on the pentose pathway, which generates NADPH, and on riboflavin, a FAD precursor vitamin.
Resumo:
Evolution through natural selection suggests unnecessary genes are lost. We observed that the yeast Candida glabrata lost the gene encoding a phosphate-repressible acid phosphatase (PHO5) present in many yeasts including Saccharomyces cerevisiae. However, C. glabrata still had phosphate starvation-inducible phosphatase activity. Screening a C. glabrata genomic library, we identified CgPMU2, a member of a three-gene family that contains a phosphomutase-like domain. This small-scale gene duplication event could allow for sub- or neofunctionalization. On the basis of phylogenetic and biochemical characterizations, CgPMU2 has neofunctionalized to become a broad range, phosphate starvation-regulated acid phosphatase, which functionally replaces PHO5 in this pathogenic yeast. We determined that CgPmu2, unlike ScPho5, is not able to hydrolyze phytic acid (inositol hexakisphosphate). Phytic acid is present in fruits and seeds where S. cerevisiae grows, but is not abundant in mammalian tissues where C. glabrata grows. We demonstrated that C. glabrata is limited from an environment where phytic acid is the only source of phosphate. Our work suggests that during evolutionary time, the selection for the ancestral PHO5 was lost and that C. glabrata neofunctionalized a weak phosphatase to replace PHO5. Convergent evolution of a phosphate starvation-inducible acid phosphatase in C. glabrata relative to most yeast species provides an example of how small changes in signal transduction pathways can mediate genetic isolation and uncovers a potential speciation gene.
Resumo:
The inhibition of phosphatidic acid phosphatase (PAP) activity by propanolol indicates that diacylglycerol (DAG) is required for the formation of transport carriers at the Golgi and for retrograde trafficking to the ER. Here we report that the PAP2 family member lipid phosphate phosphatase 3 (LPP3, also known as PAP2b) localizes in compartments of the secretory pathway from ER export sites to the Golgi complex. The depletion of human LPP3: (i) reduces the number of tubules generated from the ER-Golgi intermediate compartment and the Golgi, with those formed from the Golgi being longer in LPP3-silenced cells than in control cells; (ii) impairs the Rab6-dependent retrograde transport of Shiga toxin subunit B from the Golgi to the ER, but not the anterograde transport of VSV-G or ssDsRed; and (iii) induces a high accumulation of Golgi-associated membrane buds. LPP3 depletion also reduces levels of de novo synthesized DAG and the Golgi-associated DAG contents. Remarkably, overexpression of a catalytically inactive form of LPP3 mimics the effects of LPP3 knockdown on Rab6-dependent retrograde transport. We conclude that LPP3 participates in the formation of retrograde transport carriers at the ER-Golgi interface, where it transitorily cycles, and during its route to the plasma membrane.
Resumo:
Trying to define the precise role played by insulin regulating the survival of brown adipocytes, we have used rat fetal brown adipocytes maintained in primary culture. The effect of insulin on apoptosis and the mechanisms involved were assessed. Different from the known effects of insulin as a survival factor, we have found that long-term treatment (72 h) with insulin induces apoptosis in rat fetal brown adipocytes. This process is dependent on the phosphatidylinositol 3-kinase/mammalian target of rapamycin/p70 S6 kinase pathway. Short-term treatment with the conditioned medium from brown adipocytes treated with insulin for 72 h mimicked the apoptotic effect of insulin. During the process, caspase 8 activation, Bid cleavage, cytochrome c release, and activation of caspases 9 and 3 are sequentially produced. Treatment with the caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp (Z-VAD), prevents activation of this apoptotic cascade. The antioxidants, ascorbic acid and superoxide dismutase, also impair this process of apoptosis. Moreover, generation of reactive oxygen species (ROS), probably through reduced nicotinamide adenine dinucleotide phosphate oxidases, and a late decrease in reduced glutathione content are produced. According to this, antioxidants prevent caspase 8 activation and Bid cleavage, suggesting that ROS production is an important event mediating this process of apoptosis. However, the participation of uncoupling protein-1, -2, and -3 regulating ROS is unclear because their levels remain unchanged upon insulin treatment for 72 h. Our data suggest that the prolonged hyperinsulinemia might cause insulin resistance through the loss of brown adipose tissue.