964 resultados para Outlet Boundary Condition


Relevância:

90.00% 90.00%

Publicador:

Resumo:

In linear cascade wind tunnel tests, a high level of pitchwise periodicity is desirable to reproduce the azimuthal periodicity in the stage of an axial compressor or turbine. Transonic tests in a cascade wind tunnel with open jet boundaries have been shown to suffer from spurious waves, reflected at the jet boundary, that compromise the flow periodicity in pitch. This problem can be tackled by placing at this boundary a slotted tailboard with a specific wall void ratio s and pitch angle a. The optimal value of the s-a pair depends on the test section geometry and on the tunnel running conditions. An inviscid two-dimensional numerical method has been developed to predict transonic linear cascade flows, with and without a tailboard, and quantify the nonperiodicity in the discharge. This method includes a new computational boundary condition to model the effects of the tailboard slots on the cascade interior flow. This method has been applied to a six-blade turbine nozzle cascade, transonically tested at the University of Leicester. The numerical results identified a specific slotted tailboard geometry, able to minimize the spurious reflected waves and regain some pitchwise flow periodicity. The wind tunnel open jet test section was redesigned accordingly. Pressure measurements at the cascade outlet and synchronous spark schlieren visualization of the test section, with and without the optimized slotted tailboard, have confirmed the gain in pitchwise periodicity predicted by the numerical model. Copyright © 2006 by ASME.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study the effect of varying the boundary condition on: the spectral function of a finite one-dimensional Hubbard chain, which we compute using direct (Lanczos) diagonalization of the Hamiltonian. By direct comparison with the two-body response functions and with the exact solution of the Bethe ansatz equations, we can identify both spinon and holon features in the spectra. At half-filling the spectra have the well-known structure of a low-energy holon band and its shadow-which spans the whole Brillouin zone-and a spinon band present for momenta less than the Fermi momentum. Features related to the twisted boundary condition are cusps in the spinon band. We show that the spectral building principle, adapted to account for both the finite system size and the twisted boundary condition, describes the spectra well in terms of single spinon and holon excitations. We argue that these finite-size effects are a signature of spin-charge separation and that their study should help establish the existence and nature of spin-charge separation in finite-size systems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study boundary value problems posed in a semistrip for the elliptic sine-Gordon equation, which is the paradigm of an elliptic integrable PDE in two variables. We use the method introduced by one of the authors, which provides a substantial generalization of the inverse scattering transform and can be used for the analysis of boundary as opposed to initial-value problems. We first express the solution in terms of a 2 by 2 matrix Riemann-Hilbert problem whose \jump matrix" depends on both the Dirichlet and the Neumann boundary values. For a well posed problem one of these boundary values is an unknown function. This unknown function is characterised in terms of the so-called global relation, but in general this characterisation is nonlinear. We then concentrate on the case that the prescribed boundary conditions are zero along the unbounded sides of a semistrip and constant along the bounded side. This corresponds to a case of the so-called linearisable boundary conditions, however a major difficulty for this problem is the existence of non-integrable singularities of the function q_y at the two corners of the semistrip; these singularities are generated by the discontinuities of the boundary condition at these corners. Motivated by the recent solution of the analogous problem for the modified Helmholtz equation, we introduce an appropriate regularisation which overcomes this difficulty. Furthermore, by mapping the basic Riemann-Hilbert problem to an equivalent modified Riemann-Hilbert problem, we show that the solution can be expressed in terms of a 2 by 2 matrix Riemann-Hilbert problem whose jump matrix depends explicitly on the width of the semistrip L, on the constant value d of the solution along the bounded side, and on the residues at the given poles of a certain spectral function denoted by h. The determination of the function h remains open.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This thesis is about using appropriate tools in functional analysis arid classical analysis to tackle the problem of existence and uniqueness of nonlinear partial differential equations. There being no unified strategy to deal with these equations, one approaches each equation with an appropriate method, depending on the characteristics of the equation. The correct setting of the problem in appropriate function spaces is the first important part on the road to the solution. Here, we choose the setting of Sobolev spaces. The second essential part is to choose the correct tool for each equation. In the first part of this thesis (Chapters 3 and 4) we consider a variety of nonlinear hyperbolic partial differential equations with mixed boundary and initial conditions. The methods of compactness and monotonicity are used to prove existence and uniqueness of the solution (Chapter 3). Finding a priori estimates is the main task in this analysis. For some types of nonlinearity, these estimates cannot be easily obtained, arid so these two methods cannot be applied directly. In this case, we first linearise the equation, using linear recurrence (Chapter 4). In the second part of the thesis (Chapter 5), by using an appropriate tool in functional analysis (the Sobolev Imbedding Theorem), we are able to improve previous results on a posteriori error estimates for the finite element method of lines applied to nonlinear parabolic equations. These estimates are crucial in the design of adaptive algorithms for the method, and previous analysis relies on, what we show to be, unnecessary assumptions which limit the application of the algorithms. Our analysis does not require these assumptions. In the last part of the thesis (Chapter 6), staying with the theme of choosing the most suitable tools, we show that using classical analysis in a proper way is in some cases sufficient to obtain considerable results. We study in this chapter nonexistence of positive solutions to Laplace's equation with nonlinear Neumann boundary condition. This problem arises when one wants to study the blow-up at finite time of the solution of the corresponding parabolic problem, which models the heating of a substance by radiation. We generalise known results which were obtained by using more abstract methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We analyze the behavior of solutions of nonlinear elliptic equations with nonlinear boundary conditions of type partial derivative u/partial derivative n + g( x, u) = 0 when the boundary of the domain varies very rapidly. We show that the limit boundary condition is given by partial derivative u/partial derivative n+gamma(x) g(x, u) = 0, where gamma(x) is a factor related to the oscillations of the boundary at point x. For the case where we have a Lipschitz deformation of the boundary,. is a bounded function and we show the convergence of the solutions in H-1 and C-alpha norms and the convergence of the eigenvalues and eigenfunctions of the linearization around the solutions. If, moreover, a solution of the limit problem is hyperbolic, then we show that the perturbed equation has one and only one solution nearby.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study how oscillations in the boundary of a domain affect the behavior of solutions of elliptic equations with nonlinear boundary conditions of the type partial derivative u/partial derivative n + g(x, u) = 0. We show that there exists a function gamma defined on the boundary, that depends on an the oscillations at the boundary, such that, if gamma is a bounded function, then, for all nonlinearities g, the limiting boundary condition is given by partial derivative u/partial derivative n + gamma(x)g(x, u) = 0 (Theorem 2.1, Case 1). Moreover, if g is dissipative and gamma infinity then we obtain a Dirichlet an boundary condition (Theorem 2.1, Case 2).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this work we show how to define the action of a scalar field such that the Robin boundary condition is implemented dynamically, i.e. as a consequence of the stationary action principle. We discuss the quantization of that system via functional integration. Using this formalism, we derive an expression for the Casimir energy of a massless scalar field under Robin boundary conditions on a pair of parallel plates, characterized by constants c(1) and c(2). Some special cases are discussed; in particular, we show that for some values of cl and c(2) the Casimir energy as a function of the distance between the plates presents a minimum. We also discuss the renormalization at one-loop order of the two-point Green function in the philambda(4) theory subject to the Robin boundary condition on a plate.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A reaction-diffusion equation with variable diffusivity and non-linear flux boundary condition is considered. The goal is to give sufficient conditions on the diffusivity function for nonexistence and also for existence of nonconstant stable stationary solutions. Applications are given for the main result of nonexistence.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The lattice Boltzmann method is a popular approach for simulating hydrodynamic interactions in soft matter and complex fluids. The solvent is represented on a discrete lattice whose nodes are populated by particle distributions that propagate on the discrete links between the nodes and undergo local collisions. On large length and time scales, the microdynamics leads to a hydrodynamic flow field that satisfies the Navier-Stokes equation. In this thesis, several extensions to the lattice Boltzmann method are developed. In complex fluids, for example suspensions, Brownian motion of the solutes is of paramount importance. However, it can not be simulated with the original lattice Boltzmann method because the dynamics is completely deterministic. It is possible, though, to introduce thermal fluctuations in order to reproduce the equations of fluctuating hydrodynamics. In this work, a generalized lattice gas model is used to systematically derive the fluctuating lattice Boltzmann equation from statistical mechanics principles. The stochastic part of the dynamics is interpreted as a Monte Carlo process, which is then required to satisfy the condition of detailed balance. This leads to an expression for the thermal fluctuations which implies that it is essential to thermalize all degrees of freedom of the system, including the kinetic modes. The new formalism guarantees that the fluctuating lattice Boltzmann equation is simultaneously consistent with both fluctuating hydrodynamics and statistical mechanics. This establishes a foundation for future extensions, such as the treatment of multi-phase and thermal flows. An important range of applications for the lattice Boltzmann method is formed by microfluidics. Fostered by the "lab-on-a-chip" paradigm, there is an increasing need for computer simulations which are able to complement the achievements of theory and experiment. Microfluidic systems are characterized by a large surface-to-volume ratio and, therefore, boundary conditions are of special relevance. On the microscale, the standard no-slip boundary condition used in hydrodynamics has to be replaced by a slip boundary condition. In this work, a boundary condition for lattice Boltzmann is constructed that allows the slip length to be tuned by a single model parameter. Furthermore, a conceptually new approach for constructing boundary conditions is explored, where the reduced symmetry at the boundary is explicitly incorporated into the lattice model. The lattice Boltzmann method is systematically extended to the reduced symmetry model. In the case of a Poiseuille flow in a plane channel, it is shown that a special choice of the collision operator is required to reproduce the correct flow profile. This systematic approach sheds light on the consequences of the reduced symmetry at the boundary and leads to a deeper understanding of boundary conditions in the lattice Boltzmann method. This can help to develop improved boundary conditions that lead to more accurate simulation results.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the present thesis, we study quantization of classical systems with non-trivial phase spaces using the group-theoretical quantization technique proposed by Isham. Our main goal is a better understanding of global and topological aspects of quantum theory. In practice, the group-theoretical approach enables direct quantization of systems subject to constraints and boundary conditions in a natural and physically transparent manner -- cases for which the canonical quantization method of Dirac fails. First, we provide a clarification of the quantization formalism. In contrast to prior treatments, we introduce a sharp distinction between the two group structures that are involved and explain their physical meaning. The benefit is a consistent and conceptually much clearer construction of the Canonical Group. In particular, we shed light upon the 'pathological' case for which the Canonical Group must be defined via a central Lie algebra extension and emphasise the role of the central extension in general. In addition, we study direct quantization of a particle restricted to a half-line with 'hard wall' boundary condition. Despite the apparent simplicity of this example, we show that a naive quantization attempt based on the cotangent bundle over the half-line as classical phase space leads to an incomplete quantum theory; the reflection which is a characteristic aspect of the 'hard wall' is not reproduced. Instead, we propose a different phase space that realises the necessary boundary condition as a topological feature and demonstrate that quantization yields a suitable quantum theory for the half-line model. The insights gained in the present special case improve our understanding of the relation between classical and quantum theory and illustrate how contact interactions may be incorporated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper some aspects of the use of non-reflecting boundaries in dynamic problems, analyzed in time domain, are considered. Current trends for treating the above mentioned problems are summarized with a particular emphasis on the use of numerical techniques, such as Boundary Element Method (BEM) or mixed and hybrid formulations, Finite Element Method (FEM) plus BEM. As an alternative to these methods, an easy time domain boundary condition, obtained from the well known consistent transmitting boundary developed by Waas for frequency domain analysis, can be applied to represent the reactions of the unbounded soil on the interest zone. The behaviour of this proposed boundary condition is studied when waves of different frequency to the one used for its obtention are acting on the physical edge of the model. As an application example,an analysis is made of the soil-structure interaction of a rigid strip foundation on a horizontal non-linear elastic layer on bed rock. The results obtained suggest the need of time domain solutions for this type of problem

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In pre-surgery decisions in hospital emergency cases, fast and reliable results of the solid and fluid mechanics problems are of great interest to clinicians. In the current investigation, an iterative process based on a pressure-type boundary condition is proposed in order to reduce the computational costs of blood flow simulations in arteries, without losing control of the important clinical parameters. The incorporation of cardiovascular autoregulation, together with the well-known impedance boundary condition, forms the basis of the proposed methodology. With autoregulation, the instabilities associated with conventional pressure-type or impedance boundary conditions are avoided without an excessive increase in computational costs. The general behaviour of pulsatile blood flow in arteries, which is important from the clinical point of view, is well reproduced through this new methodology. In addition, the interaction between the blood and the arterial walls occurs via a modified weak coupling, which makes the simulation more stable and computationally efficient. Based on in vitro experiments, the hyperelastic behaviour of the wall is characterised and modelled. The applications and benefits of the proposed pressure-type boundary condition are shown in a model of an idealised aortic arch with and without an ascending aorta dissection, which is a common cardiovascular disorder.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The numerical solution of the time dependent wave equation in an unbounded domain generally leads to a truncation of this domain, which requires the introduction of an artificial boundary with associated boundary conditions. Such nonreflecting conditions ensure the equivalence between the solution of the original problem in the unbounded region and the solution inside the artificial boundary. We consider the acoustic wave equation and derive exact transparent boundary conditions that are local in time and can be directly used in explicit methods. These conditions annihilate wave harmonics up to a given order on a spherical artificial boundary, and we show how to combine the derived boundary condition with a finite difference method. The analysis is complemented by a numerical example in two spatial dimensions that illustrates the usefulness and accuracy of transparent boundary conditions.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

in this paper we investigate the solvability of the Neumann problem (1.1) involving the critical Sobolev exponents on the right-hand side of the equation and in the boundary condition. It is assumed that the coefficients Q and P are smooth. We examine the common effect of the mean curvature of the boundary a deltaOhm and the shape of the graph of the coefficients Q and P on the existence of solutions of problem (1.1). (C) 2003 Published by Elsevier Inc.