Boundary oscillations and nonlinear boundary conditions
Contribuinte(s) |
Universidade Estadual Paulista (UNESP) |
---|---|
Data(s) |
26/02/2014
20/05/2014
26/02/2014
20/05/2014
15/07/2006
|
Resumo |
We study how oscillations in the boundary of a domain affect the behavior of solutions of elliptic equations with nonlinear boundary conditions of the type partial derivative u/partial derivative n + g(x, u) = 0. We show that there exists a function gamma defined on the boundary, that depends on an the oscillations at the boundary, such that, if gamma is a bounded function, then, for all nonlinearities g, the limiting boundary condition is given by partial derivative u/partial derivative n + gamma(x)g(x, u) = 0 (Theorem 2.1, Case 1). Moreover, if g is dissipative and gamma infinity then we obtain a Dirichlet an boundary condition (Theorem 2.1, Case 2). |
Formato |
99-104 |
Identificador |
http://dx.doi.org/10.1016/j.crma.2006.05.007 Comptes Rendus Mathematique. Paris: Elsevier France-editions Scientifiques Medicales Elsevier, v. 343, n. 2, p. 99-104, 2006. 1631-073X http://hdl.handle.net/11449/25113 10.1016/j.crma.2006.05.007 WOS:000239380200006 |
Idioma(s) |
eng |
Publicador |
Elsevier B.V. |
Relação |
Comptes Rendus Mathematique |
Direitos |
closedAccess |
Tipo |
info:eu-repo/semantics/article |