Boundary oscillations and nonlinear boundary conditions


Autoria(s): Arrieta, Jose M.; Bruschi, Simone M.
Contribuinte(s)

Universidade Estadual Paulista (UNESP)

Data(s)

26/02/2014

20/05/2014

26/02/2014

20/05/2014

15/07/2006

Resumo

We study how oscillations in the boundary of a domain affect the behavior of solutions of elliptic equations with nonlinear boundary conditions of the type partial derivative u/partial derivative n + g(x, u) = 0. We show that there exists a function gamma defined on the boundary, that depends on an the oscillations at the boundary, such that, if gamma is a bounded function, then, for all nonlinearities g, the limiting boundary condition is given by partial derivative u/partial derivative n + gamma(x)g(x, u) = 0 (Theorem 2.1, Case 1). Moreover, if g is dissipative and gamma infinity then we obtain a Dirichlet an boundary condition (Theorem 2.1, Case 2).

Formato

99-104

Identificador

http://dx.doi.org/10.1016/j.crma.2006.05.007

Comptes Rendus Mathematique. Paris: Elsevier France-editions Scientifiques Medicales Elsevier, v. 343, n. 2, p. 99-104, 2006.

1631-073X

http://hdl.handle.net/11449/25113

10.1016/j.crma.2006.05.007

WOS:000239380200006

Idioma(s)

eng

Publicador

Elsevier B.V.

Relação

Comptes Rendus Mathematique

Direitos

closedAccess

Tipo

info:eu-repo/semantics/article