940 resultados para ORGANIC-INORGANIC HYBRID COMPOSITES
Gallium-sulphide supertetrahedral clusters as building blocks of covalent organic-inorganic networks
Resumo:
The synthesis and characterisation of novel covalent organic-inorganic architectures containing organically-functionalised supertetrahedra is described. The structures of these unique materials consist of one-dimensional zigzag chains or of honeycomb-type layers, in which gallium-sulfide supertetrahedral clusters and dipyridyl ligands alternate.
Resumo:
The photocatalytic performance of TiO(2)-SiMgO(x) ceramic plates for trichloroethylene abatement in gas phase has been evaluated under sun irradiance conditions. A continuous flow Pyrex glass reactor fixed on the focus of a compound parabolic collector has been used. The performance of the hybrid photocatalyst has been evaluated as the variation of TCE conversion and reaction products formation with the solar irradiance at different total gas flow, TCE concentration, and water vapour content. SiMgO(x) not only provides adsorbent properties to the photocatalyst, but it also allows the effective use of the material during low solar irradiance conditions. The adsorption-desorption phenomena play a pivotal role in the behaviour of the system. Thus, TCE conversion curves present two different branches when the sun irradiance increases (sunrise) or decreases (sunset). CO(2), COCl(2) and DCAC were the most relevant products detected. Meanwhile CO(2) concentration was insensitive to the branch analysed, COCl(2) or DCAC were not indicating the ability of these compounds to be adsorbed on the composite. An increase of the UV irradiation at total TCE conversion promotes the CO(2) selectivity. The excess of energy arriving to the reactor favours the direct reaction pathway to produce CO(2). The photonic efficiency, calculated as a function of the rate of CO(2) formation, decreases linearly with the solar irradiance up to around 2 mW cm(-2), where it becomes constant. For decontamination systems high TCE conversion is pursuit and then high solar irradiance values are required, in spite of lower photonic efficiency values. The present photocatalyst configuration, with only 17% of the reactor volume filled with the photoactive material, allows total TCE conversion for 150 ppm and 1 L min(-1) in a wide sun irradiance window from 2 to 4 mW cm(-2). The incorporation of water vapour leads to an increase of the CO(2) selectivity keeping the TCE conversion around 90%, although significant amounts of COCl(2) were observed. (c) 2010 Elsevier B.V. All rights reserved.
Resumo:
Continuous fiber/metal laminates (FML) offer significant improvements over current available materials for aircraft structures due to their excellent fatigue endurance and low density. Glass fibers/epoxy laminae and aluminum foil (Glare) are commonly used to obtain these hybrid composites. The environmental factors can limit the applications of composites by deteriorating the mechanical properties during service. Usually, epoxy resins absorb moisture when exposed to humid environments and metals are prone to surface corrosion. Therefore, the combination of the two materials in Glare (polymeric composite and metal). can lead to differences that often turn out to be beneficial in terms of mechanical properties and resistance to environmental influences. In this work. The viscoelastic properties. such as storage modulus (E') and loss modulus (E'), were obtained for glass fiber/epoxy composite, aluminum 2024-T3 alloy and for a glass fiber/epoxy/aluminum laminate (Glare). It was found that the glass fiber/epoxy (G/E) composites decrease the E' modulus during hygrothermal conditioning up to saturation point (6 weeks). However, for Glare laminates the E' modulus remains unchanged (49GPa) during the cycle of hygrothermal conditioning. The outer aluminum sheets in the Glare laminate shield the G/E composite laminae from moisture absorption. which in turn prevent, in a certain extent, the material from hygrothermal degradation effects. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Bacterial cellulose (BC) hydrated membranes present nanometric reticulated structure that can be used as a template in the preparation of new organic-inorganic hybrids. BC-silica hybrids were prepared from BC membranes and tetraethoxysilane, (TEOS) at neutral pH conditions at room temperature. Macroscopically homogeneous membranes were obtained containing up to 66 wt.% of silica spheres, 20-30 nm diameter. Scanning electron micrographs clearly show the silica spheres attached to cellulose microfibrils. By removing the cellulose, the silica spheres can be easily recovered. The new hybrids are stable up to 300 degrees C and display a broad emission band under UV excitation assigned to oxygen-related defects at the silica particles surface. Emission color can be tuned by changing the excitation wavelength.
Resumo:
An organic-inorganic hybrid coating was developed to improve the corrosion resistance of the aluminum alloy AA 2024-T3. Organic and inorganic coatings derived from glycidoxypropyltrimethoxysilane (GPTMS) and aluminum tri-sec-butoxide Al((OBu)-Bu-s)(3), with different cerium contents, were deposited onto aluminum by dip-coating process. Corrosion resistance and mechanical properties were investigated by electrochemical impedance measurements and nano-indentation respectively. An optimal cerium concentration of 0.01 M was evidenced. To correlate and explain the hybrid coating performances in relation to the cerium content, NMR experiments were performed. It has been shown that when the cerium concentration in the hybrid is higher than 0.01 M there are important modifications in the hybrid structure that account for the mechanical properties and anti-corrosion behavior of the sol-gel coating. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Sol-gel derived poly(oxyethylene)/siloxane organic/inorganic di-ureasil hybrids containing different amounts of methacrylic acid (McOH, CH(2)=C(CH(3))COOH)) modified zirconium oxo-clusters (Zr-OMc) were processed as thin films deposited in glassy substrates via spin coating and as transparent and shape controlled monoliths. Channel monomode waveguides and diffraction gratings were UV patterned using the Talbot interferometer and the Lloyd mirror interferometer experimental setups. The time dependence of the diffraction gratings efficiency was studied for hybrids containing different amounts of Zr-OMc. Finally, the number of propagating modes and the refractive index gradient within the waveguide region, determined as a Gaussian section located below the patterned channel, was evaluated and modeled, a maximum index contrast of 2.43 X 10(-5) being estimated.
Resumo:
In this work, a new organic-inorganic hybrid material has been synthesized by the incorporation of croconate ion into a calcium polyphosphate coacervate. The hybrid so obtained was characterized by means of electronic and vibrational spectroscopies. The material is a homogeneous mixture described by a structural model, which includes helical chains of polyphosphate ions, where the calcium ion occupies the internal vacancies of the structure. The croconate ion appears to be occupying the regions outside the polymeric structure, surrounded by several water molecules. The electronic spectrum of the incorporated material shows a broad band peaking at the same wavelength region (363 nm) observed for the aqueous solution of croconate ion, and manifesting the Jahn-Teller effect as evidenced by the doublet structure of the band. The infrared spectrum is widely dominated by the absorption bands of the polyphosphate ion and the appearance of the carbonyl stretching band at ca. 1550 cm(-1) indicates the presence of croconate ion incorporated in the structure. The Raman spectrum of the material shows several vibrational bands related to the oxocarbon moiety; most of them are shifted in comparison with the free ion. These shifts can be understood in terms of strong hydrogen bonding interactions between water molecules and the oxocarbon moiety. The low temperature methodology proposed here can be well used in the preparation of new phosphate glasses containing organic moieties opening the route to an entirely new class of hybrid glasses. (c) 2004 Elsevier B.V All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Organic-inorganic hybrids, named di-ureasils and described by polyether-based chains grafted to both ends to a siliceous backbone through urea cross linkages, were used as hosts for incorporation of the well-known coordination complex of trivalent europium (Eu3+) ions described by the formula [Eu(TTA)(3)(H2O)(2)] (where TTA stands for thenoyltrifluoroacetone). By comparing with Eu3+-doped di-ureasil without complex form the new materials prepared here enhanced the quantum efficiency for photoemission of Eu3+ ions. The enhancement can be explained by the coordination ability of the organic counterpart of the host structure which is strong enough to displace water molecules in [Eu(TTA)(3)(H2O)(2)] from the rare earth neighbourhood after the incorporation process. High intensity of Eu3+ emission was observed with a low non-radiative decay rate under ultraviolet excitation. The quantum efficiency calculated from the decay of D-5(0) emission was 74%, which in the same range of values previously obtained for the most efficient Eu3+ coordination compounds reported in literature. Luminescence, X-ray absorption and infrared absorption results considered together leads to a picture where the first coordination shell of Eu3+ is composed of the 6 oxygen atoms of the 3 beta-diketonate ligands and 2 ether-like oxygen atoms of the host. (C) 2003 Elsevier B.V. B.V. All rights reserved.
Resumo:
Nd3+-based organic/inorganic hybrids have potential application in the field of integrated optics. Attractive sol-gel derived di-urea and di-urethane cross-linked poly (oxyethylene) (POE)/siloxane hybrids (di-ureasils and di-urethanesils, respectively) doped with neodymium triflate (Nd(CF3SO3)(3)) were examined by Fourier transform mid-infrared (FT-IR), Raman (FT-Raman), Si-29 magic-angle spinning (MAS) nuclear magnetic resonance (NMR) and photoluminescence spectroscopies, and small-angle X-ray scattering (SAXS). The goals of this work were to determine which cation coordinating site of the host matrix (ether oxygen atoms or carbonyl oxygen atoms) is active in each of the materials analyzed, its influence on the nanostructure of the samples and its relation with the photoluminescence properties. The main conclusion derived from this study is that the hydrogen-bonded associations formed throughout the materials play a major role in the hybrids nanostructure and photoluminescence properties.
Resumo:
The preparation and characterization of new Eu3+ doped polyphosphate-aminosilane hybrids xerogels is reported. Eu3+ D-5(0) emission quantum efficiency ranges from 0.41 to 0.54 depending on the SUP ratio. These rather high values are due to the substitution of phosphate and amino groups for water in the Eu3+ coordination shell. Raman and Si-29 and C-13 CP-MAS NMR results suggest that no strong interaction exists between the polyphosphate and the siloxane parts. Not fully condensed siloxane colloidal domains seem to be homogeneously distributed in the polyphosphate network. Good optical quality and favorable Eu3+ spectroscopic characteristics suggest these new hybrids as good hosts for lanthanide ions in optical devices. (C) 2003 Published by Elsevier B.V.
Resumo:
The effect of doping by europium triflate on the nanoscopic structure of organic-inorganic hybrid formed by a siliceous network containing pendant amine-terminated propyl chains, called aminosils, was investigated by Small-Angle X-ray Scattering (SAXS). It appears that the composites exhibit a two-level structure. The first level consists of well-condensed cubic-like siloxane octamers, with a radius of gyration around 2 angstrom. The second level is formed by the aggregation of these siloxane nanodomains to form larger structures, in which the nanodomains are spatially correlated and separated by the organic pendant chains. Europium doping inhibits the aggregation between siloxane octamers, leading to a less compact second-level structure. This can be explained by the Eu3+ stop coordination close to the external surface of the siloxane nanodomains, as detected by luminescence spectroscopy.
Resumo:
Polysiloxane hybrid films were deposited on stainless steel by dip-coating using a sol prepared by hydrolytic co-polycondensation of tetraethoxysilane (TEOS) and 3-methacryloxy propyltrimethoxysilane (MPTS), followed by radical polymerization of methacrylic moieties. The TEOS/MPTS ratio was chosen equal to 2 and the Ce/Si ratio varied between 0.01 and 0.1. The effects of cerium concentration and valence (Ce(III) and Ce (IV)) on the structural features of polysiloxane films were studied by X-ray photoelectron spectroscopy (XPS) and (29)Si nuclear magnetic resonance (NMR). The corrosion protection of stainless steel by the hybrid coatings was investigated by XPS, electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization curves, after immersion in saline and acid solutions. The NMR results have shown for Ce(IV) doped films a high degree of polycondensation of up to 89%. Electrochemical analysis has evidenced that hybrid films with the lowest Ce concentration act as an efficient diffusion barrier by increasing the corrosion resistance and reducing the current densities up to 3 orders of magnitude compared to bare stainless steel. The analysis of structural effects induced by Ce(III) and Ce(IV) species, performed by XPS, indicates that the improved corrosion protection of Ce(IV) doped films might be mainly related to the enhanced polymerization of siloxane groups. (C) 2010 Elsevier B.V. All rights reserved.