876 resultados para OPTICAL-FIBERS
Resumo:
The combination of the third-order optical nonlinearity with chromatic dispersion in optical fibers offers an extremely rich variety of possibilities for tailoring the temporal and spectral content of a light signal, depending on the regime of dispersion that is used. Here, we review recent progress on the use of third-order nonlinear processes in optical fibers for pulse shaping in the temporal and spectral domains. Various examples of practical significance will be discussed, spanning fields from the generation of specialized temporal waveforms to the generation of ultrashort pulses, and to stable continuum generation.
Resumo:
We report on the thermal characteristics or Bragg gratings fabricated in polymer optical fibers. We have observed a permanent shift in the grating wavelength at room temperature which occurs when the grating has been heated above a threshold temperature. This threshold temperature is dependent on the thermal history of the grating, and we attribute the effect to a shrinking of the fiber. This effect can be avoided by annealing the fiber before grating inscription, resulting in a linear response with temperature and an increased linear operating temperature range of the grating. © 2007 Optical Society of America.
Resumo:
A theoretical model is developed to describe the propagation of ultra-short optical pulses in fiber transmission systems in the quasi-linear regime, with periodically inserted in-line lumped nonlinear optical devices. Stable autosoliton solutions are obtained for a particular application of the general theory.
Resumo:
Spectrum narrowing of CW light was observed experimentally in optical transmission fibers with normal dispersion. The effect's theoretical interpretation as an effective self-pumping parametric amplification of the spectrum's central part is confirmed by numerical modeling. OCIS codes: (060.4370) Nonlinear optics, fibers; (190.4410) Nonlinear optics, parametric processes; (190.4380); Nonlinear optics, four-wave mixing. © OSA 2015.
Resumo:
One of the extraordinary aspects of nonlinear wave evolution which has been observed as the spontaneous occurrence of astonishing and statistically extraordinary amplitude wave is called rogue wave. We show that the eigenvalues of the associated equation of nonlinear Schrödinger equation are almost constant in the vicinity of rogue wave and we validate that optical rogue waves are formed by the collision between quasi-solitons in anomalous dispersion fiber exhibiting weak third order dispersion.
Resumo:
Thermal tuning of a coaxial fiber resonator with a silica cladding surrounding an inner silicon core is investigated. By pumping the silicon with below bandgap light, it is possible to redshift the WGM resonances. © 2014 OSA.
Resumo:
This review is concerned with nanoscale effects in highly transparent dielectric photonic structures fabricated from optical fibers. In contrast to those in plasmonics, these structures do not contain metal particles, wires, or films with nanoscale dimensions. Nevertheless, a nanoscale perturbation of the fiber radius can significantly alter their performance. This paper consists of three parts. The first part considers propagation of light in thin optical fibers (microfibers) having the radius of the order of 100 nanometers to 1 micron. The fundamental mode propagating along a microfiber has an evanescent field which may be strongly expanded into the external area. Then, the cross-sectional dimensions of the mode and transmission losses are very sensitive to small variations of the microfiber radius. Under certain conditions, a change of just a few nanometers in the microfiber radius can significantly affect its transmission characteristics and, in particular, lead to the transition from the waveguiding to non-waveguiding regime. The second part of the review considers slow propagation of whispering gallery modes in fibers having the radius of the order of 10–100 microns. The propagation of these modes along the fiber axis is so slow that they can be governed by extremely small nanoscale changes of the optical fiber radius. This phenomenon is exploited in SNAP (surface nanoscale axial photonics), a new platform for fabrication of miniature super-low-loss photonic integrated circuits with unprecedented sub-angstrom precision. The SNAP theory and applications are overviewed. The third part of this review describes methods of characterization of the radius variation of microfibers and regular optical fibers with sub-nanometer precision.
Resumo:
A systematic study of annealing behavior of drawn PMMA fibers was performed. Annealing dynamics were investigated under different environmental conditions by fiber longitudinal shrinkage monitoring. The shrinkage process was found to follow a stretched exponential decay function revealing the heterogeneous nature of the underlying molecular dynamics. The complex dependence of the fiber shrinkage on initial degree of molecular alignment in the fiber, annealing time and temperature was investigated and interpreted. Moreover, humidity was shown to have a profound effect on the annealing process, which was not recognized previously. Annealing was also shown to have considerable effect on the fiber mechanical properties associated with the relaxation of molecular alignment in the fiber. The consequences of fiber annealing for the climatic stability of certain polymer optical fiber-based sensors are discussed, emphasizing the importance of fiber controlled pre-annealing with respect to the foreseeable operating conditions.
Resumo:
The features of the Furnace Chemical Vapor Deposition (FCVD) method of manufacturing preforms for special optical fibers are considered. It is shown that misalignment of substrate silica tube and furnace hole axes has a negative effect on the quality of fabricated preforms, leading to angular and radial asymmetry of the refractive index profile. Ways of getting rid of this and other disadvantages of the FCVD method are described. Some advantages of the FCVD method over the MCVD method are shown. It was demonstrated that the FCVD method, despite some drawbacks, allows to manufacture high-quality fiber preforms with good symmetry of the refractive index profile, and thus it is promising for fabrication of dispersion, dispersion varying and active fibers. © 2011 Copyright Society of Photo-Optical Instrumentation Engineers (SPIE).
Resumo:
We present comprehensive design rules to optimize the process of spectral compression arising from nonlinear pulse propagation in an optical fiber. Extensive numerical simulations are used to predict the performance characteristics of the process as well as to identify the optimal operational conditions within the space of system parameters. It is shown that the group velocity dispersion of the fiber is not detrimental and, in fact, helps achieve optimum compression. We also demonstrate that near-transform-limited rectangular and parabolic pulses can be generated in the region of optimum compression.
Resumo:
We measure the radial profile of the photoelastic coefficient C(r) in single-mode polymer optical fibers (POFs), and we determine the evolution of C(r) after annealing the fibers at temperatures from 40°C to 80°C. We demonstrate that C(r) in the fibers drawn from a preform without specific thermal pre-treatment changes and converges to values between 1.2 and 1.6×10-12 Pa-1 following annealing at 80°C. The annealed fibers display a smoothened radial profile of C(r) and a lowered residual birefringence. In contrast, the mean value of C(r) of the fiber drawn from a preform that has been pre-annealed remains constant after our annealing process and is significantly higher, i.e., 4×10-12 Pa-1. The annealing process decreases the residual birefringence to a lower extent as well. These measurements indicate the impact of annealing on the thermal stability of the photoelastic coefficient of POFs, which is an essential characteristic in view of developing POF-based thermomechanical sensors.
Resumo:
Polymer Optical Fibers have occupied historically a place for large core flexible fibers operating in short distances. In addition to their practical passive application in short-haul communication they constitute a potential research field as active devices with organic dopants. Organic dyes are preferred as dopants over organic semiconductors due to their higher optical cross section. Thus organic dyes as gain media in a polymer fiber is used to develop efficient and narrow laser sources with a tunability throughout the visible region or optical amplifier with high gain. Dyes incorporated in fiber form has added advantage over other solid state forms such as films since the pump power required to excite the molecules in the core of the fiber is less thereby utilising the pump power effectively. In 1987, Muto et.al investigated a dye doped step index polymer fiber laser. Afterwards, numerous researches have been carried out in this area demonstrating laser emission from step index, graded index and hollow optical fibers incorporating various dyes. Among various dyes, Rhodamine6G is the most widely and commonly used laser dye for the last four decades. Rhodamine6G has many desirable optical properties which make it preferable over other organic dyes such as Coumarin, Nile Blue, Curcumin etc. The research focus on the implementation of efficient fiber lasers and amplifiers for short fiber distances. Developing efficient plastic lasers with electrical pumping can be a new proposal in this field which demands lowest possible threshold pump energy of the gain medium in the cavity as an important parameter. One way of improving the efficiency of the lasers, through low threshold pump energy, is by modifying the gain of the amplifiers in the resonator/cavity. Success in the field of Radiative Decay Engineering can pave way to this problem. Laser gain media consisting of dye-nanoparticle composites can improve the efficiency by lowering the lasing threshold and enhancing the photostability. The electric field confined near the surface of metal nanoparticles due to Localized Surface Plasmon Resonance can be very effective for the excitation of active centers to impart high optical gain for lasing. Since the Surface Plasmon Resonance of nanoparticles of gold and silver lies in the visible range, it can affect the spectral emission characteristics of organic dyes such as Rhodamine6G through plasmon field generated by the particles. The change in emission of the dye placed near metal nanoparticles depend on plasmon field strength which in turn depends on the type of metal, size of nanoparticle, surface modification of the particle and the wavelength of incident light. Progress in fabrication of different types of nanostructures lead to the advent of nanospheres, nanoalloys, core-shell and nanowires to name a few. The thesis deals with the fabrication and characterisation of polymer optical fibers with various metallic and bimetallic nanostructures incorporated in the gain media for efficient fiber lasers with low threshold and improved photostability.
Resumo:
Les besoins toujours croissants en terme de transfert de données numériques poussent au développement de nouvelles technologies pour accroître la capacité des réseaux, notamment en ce qui concerne les réseaux de fibre optique. Parmi ces nouvelles technologies, le multiplexage spatial permet de multiplier la capacité des liens optiques actuels. Nous nous intéressons particulièrement à une forme de multiplexage spatial utilisant le moment cinétique orbital de la lumière comme base orthogonale pour séparer un certain nombre de canaux. Nous présentons d’abord les notions d’électromagnétisme et de physique nécessaires à la compréhension des développements ultérieurs. Les équations de Maxwell sont dérivées afin d’expliquer les modes scalaires et vectoriels de la fibre optique. Nous présentons également d’autres propriétés modales, soit la coupure des modes, et les indices de groupe et de dispersion. La notion de moment cinétique orbital est ensuite introduite, avec plus particulièrement ses applications dans le domaine des télécommunications. Dans une seconde partie, nous proposons la carte modale comme un outil pour aider au design des fibres optiques à quelques modes. Nous développons la solution vectorielle des équations de coupure des modes pour les fibres en anneau, puis nous généralisons ces équations pour tous les profils de fibres à trois couches. Enfin, nous donnons quelques exemples d’application de la carte modale. Dans la troisième partie, nous présentons des designs de fibres pour la transmission des modes avec un moment cinétique orbital. Les outils développés dans la seconde partie sont utilisés pour effectuer ces designs. Un premier design de fibre, caractérisé par un centre creux, est étudié et démontré. Puis un second design, une famille de fibres avec un profil en anneau, est étudié. Des mesures d’indice effectif et d’indice de groupe sont effectuées sur ces fibres. Les outils et les fibres développés auront permis une meilleure compréhension de la transmission dans la fibre optique des modes ayant un moment cinétique orbital. Nous espérons que ces avancements aideront à développer prochainement des systèmes de communications performants utilisant le multiplexage spatial.
Resumo:
When it comes to measuring blade-tip clearance or blade-tip timing in turbines, reflective intensity-modulated optical fiber sensors overcome several traditional limitations of capacitive, inductive or discharging probe sensors. This paper presents the signals and results corresponding to the third stage of a multistage turbine rig, obtained from a transonic wind-tunnel test. The probe is based on a trifurcated bundle of optical fibers that is mounted on the turbine casing. To eliminate the influence of light source intensity variations and blade surface reflectivity, the sensing principle is based on the quotient of the voltages obtained from the two receiving bundle legs. A discrepancy lower than 3% with respect to a commercial sensor was observed in tip clearance measurements. Regarding tip timing measurements, the travel wave spectrum was obtained, which provides the average vibration amplitude for all blades at a particular nodal diameter. With this approach, both blade-tip timing and tip clearance measurements can be carried out simultaneously. The results obtained on the test turbine rig demonstrate the suitability and reliability of the type of sensor used, and suggest the possibility of performing these measurements in real turbines under real working conditions.