957 resultados para Nuclear engineering inverse problems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Calculating the potentials on the heart’s epicardial surface from the body surface potentials constitutes one form of inverse problems in electrocardiography (ECG). Since these problems are ill-posed, one approach is to use zero-order Tikhonov regularization, where the squared norms of both the residual and the solution are minimized, with a relative weight determined by the regularization parameter. In this paper, we used three different methods to choose the regularization parameter in the inverse solutions of ECG. The three methods include the L-curve, the generalized cross validation (GCV) and the discrepancy principle (DP). Among them, the GCV method has received less attention in solutions to ECG inverse problems than the other methods. Since the DP approach needs knowledge of norm of noises, we used a model function to estimate the noise. The performance of various methods was compared using a concentric sphere model and a real geometry heart-torso model with a distribution of current dipoles placed inside the heart model as the source. Gaussian measurement noises were added to the body surface potentials. The results show that the three methods all produce good inverse solutions with little noise; but, as the noise increases, the DP approach produces better results than the L-curve and GCV methods, particularly in the real geometry model. Both the GCV and L-curve methods perform well in low to medium noise situations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate an application of the method of fundamental solutions (MFS) to the one-dimensional parabolic inverse Cauchy–Stefan problem, where boundary data and the initial condition are to be determined from the Cauchy data prescribed on a given moving interface. In [B.T. Johansson, D. Lesnic, and T. Reeve, A method of fundamental solutions for the one-dimensional inverse Stefan Problem, Appl. Math Model. 35 (2011), pp. 4367–4378], the inverse Stefan problem was considered, where only the boundary data is to be reconstructed on the fixed boundary. We extend the MFS proposed in Johansson et al. (2011) and show that the initial condition can also be simultaneously recovered, i.e. the MFS is appropriate for the inverse Cauchy-Stefan problem. Theoretical properties of the method, as well as numerical investigations, are included, showing that accurate results can be efficiently obtained with small computational cost.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 42C05.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study proposes a new PSOS-model based damage identification procedure using frequency domain data. The formulation of the objective function for the minimization problem is based on the Frequency Response Functions (FRFs) of the system. A novel strategy for the control of the Particle Swarm Optimization (PSO) parameters based on the Nelder-Mead algorithm (Simplex method) is presented; consequently, the convergence of the PSOS becomes independent of the heuristic constants and its stability and confidence are enhanced. The formulated hybrid method performs better in different benchmark functions than the Simulated Annealing (SA) and the basic PSO (PSO(b)). Two damage identification problems, taking into consideration the effects of noisy and incomplete data, were studied: first, a 10-bar truss and second, a cracked free-free beam, both modeled with finite elements. In these cases, the damage location and extent were successfully determined. Finally, a non-linear oscillator (Duffing oscillator) was identified by PSOS providing good results. (C) 2009 Elsevier Ltd. All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OctVCE is a cartesian cell CFD code produced especially for numerical simulations of shock and blast wave interactions with complex geometries. Virtual Cell Embedding (VCE) was chosen as its cartesian cell kernel as it is simple to code and sufficient for practical engineering design problems. This also makes the code much more ‘user-friendly’ than structured grid approaches as the gridding process is done automatically. The CFD methodology relies on a finite-volume formulation of the unsteady Euler equations and is solved using a standard explicit Godonov (MUSCL) scheme. Both octree-based adaptive mesh refinement and shared-memory parallel processing capability have also been incorporated. For further details on the theory behind the code, see the companion report 2007/12.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A package of B-spline finite strip models is developed for the linear analysis of piezolaminated plates and shells. This package is associated to a global optimization technique in order to enhance the performance of these types of structures, subjected to various types of objective functions and/or constraints, with discrete and continuous design variables. The models considered are based on a higher-order displacement field and one can apply them to the static, free vibration and buckling analyses of laminated adaptive structures with arbitrary lay-ups, loading and boundary conditions. Genetic algorithms, with either binary or floating point encoding of design variables, were considered to find optimal locations of piezoelectric actuators as well as to determine the best voltages applied to them in order to obtain a desired structure shape. These models provide an overall economy of computing effort for static and vibration problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inversion problem concerning the windowed Fourier transform is considered. It is shown that, out of the infinite solutions that the problem admits, the windowed Fourier transform is the "optimal" solution according to a maximum-entropy selection criterion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A maximum entropy statistical treatment of an inverse problem concerning frame theory is presented. The problem arises from the fact that a frame is an overcomplete set of vectors that defines a mapping with no unique inverse. Although any vector in the concomitant space can be expressed as a linear combination of frame elements, the coefficients of the expansion are not unique. Frame theory guarantees the existence of a set of coefficients which is “optimal” in a minimum norm sense. We show here that these coefficients are also “optimal” from a maximum entropy viewpoint.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper deals with the use of the conjugate gradient method of function estimation for the simultaneous identification of two unknown boundary heat fluxes in parallel plate channels. The fluid flow is assumed to be laminar and hydrodynamically developed. Temperature measurements taken inside the channel are used in the inverse analysis. The accuracy of the present solution approach is examined by using simulated measurements containing random errors, for strict cases involving functional forms with discontinuities and sharp-corners for the unknown functions. Three different types of inverse problems are addressed in the paper, involving the estimation of: (i) Spatially dependent heat fluxes; (ii) Time-dependent heat fluxes; and (iii) Time and spatially dependent heat fluxes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present the extension of a methodology to solve moving boundary value problems from the second-order case to the case of the third-order linear evolution PDE qt + qxxx = 0. This extension is the crucial step needed to generalize this methodology to PDEs of arbitrary order. The methodology is based on the derivation of inversion formulae for a class of integral transforms that generalize the Fourier transform and on the analysis of the global relation associated with the PDE. The study of this relation and its inversion using the appropriate generalized transform are the main elements of the proof of our results.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider four-dimensional variational data assimilation (4DVar) and show that it can be interpreted as Tikhonov or L2-regularisation, a widely used method for solving ill-posed inverse problems. It is known from image restoration and geophysical problems that an alternative regularisation, namely L1-norm regularisation, recovers sharp edges better than L2-norm regularisation. We apply this idea to 4DVar for problems where shocks and model error are present and give two examples which show that L1-norm regularisation performs much better than the standard L2-norm regularisation in 4DVar.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we explore classification techniques for ill-posed problems. Two classes are linearly separable in some Hilbert space X if they can be separated by a hyperplane. We investigate stable separability, i.e. the case where we have a positive distance between two separating hyperplanes. When the data in the space Y is generated by a compact operator A applied to the system states ∈ X, we will show that in general we do not obtain stable separability in Y even if the problem in X is stably separable. In particular, we show this for the case where a nonlinear classification is generated from a non-convergent family of linear classes in X. We apply our results to the problem of quality control of fuel cells where we classify fuel cells according to their efficiency. We can potentially classify a fuel cell using either some external measured magnetic field or some internal current. However we cannot measure the current directly since we cannot access the fuel cell in operation. The first possibility is to apply discrimination techniques directly to the measured magnetic fields. The second approach first reconstructs currents and then carries out the classification on the current distributions. We show that both approaches need regularization and that the regularized classifications are not equivalent in general. Finally, we investigate a widely used linear classification algorithm Fisher's linear discriminant with respect to its ill-posedness when applied to data generated via a compact integral operator. We show that the method cannot stay stable when the number of measurement points becomes large.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider the Dirichlet boundary-value problem for the Helmholtz equation, Au + x2u = 0, with Imx > 0. in an hrbitrary bounded or unbounded open set C c W. Assuming continuity of the solution up to the boundary and a bound on growth a infinity, that lu(x)l < Cexp (Slxl), for some C > 0 and S~< Imx, we prove that the homogeneous problem has only the trivial salution. With this resnlt we prove uniqueness results for direct and inverse problems of scattering by a bounded or infinite obstacle.