997 resultados para Normotensive Int
Resumo:
Kartta kuuluu A. E. Nordenskiöldin kokoelmaan
Resumo:
The aim of the present study was to evaluate the effect of amiodarone on mean arterial pressure (MAP), heart rate (HR), baroreflex, Bezold-Jarisch, and peripheral chemoreflex in normotensive and chronic one-kidney, one-clip (1K1C) hypertensive rats (N = 9 to 11 rats in each group). Amiodarone (50 mg/kg, iv) elicited hypotension and bradycardia in normotensive (-10 ± 1 mmHg, -57 ± 6 bpm) and hypertensive rats (-37 ± 7 mmHg, -39 ± 19 bpm). The baroreflex index (deltaHR/deltaMAP) was significantly attenuated by amiodarone in both normotensive (-0.61 ± 0.12 vs -1.47 ± 0.14 bpm/mmHg for reflex bradycardia and -1.15 ± 0.19 vs -2.63 ± 0.26 bpm/mmHg for reflex tachycardia) and hypertensive rats (-0.26 ± 0.05 vs -0.72 ± 0.16 bpm/mmHg for reflex bradycardia and -0.92 ± 0.19 vs -1.51 ± 0.19 bpm/mmHg for reflex tachycardia). The slope of linear regression from deltapulse interval/deltaMAP was attenuated for both reflex bradycardia and tachycardia in normotensive rats (-0.47 ± 0.13 vs -0.94 ± 0.19 ms/mmHg and -0.80 ± 0.13 vs -1.11 ± 0.13 ms/mmHg), but only for reflex bradycardia in hypertensive rats (-0.15 ± 0.02 vs -0.23 ± 0.3 ms/mmHg). In addition, the MAP and HR responses to the Bezold-Jarisch reflex were 20-30% smaller in amiodarone-treated normotensive or hypertensive rats. The bradycardic response to peripheral chemoreflex activation with intravenous potassium cyanide was also attenuated by amiodarone in both normotensive (-30 ± 6 vs -49 ± 8 bpm) and hypertensive rats (-34 ± 13 vs -42 ± 10 bpm). On the basis of the well-known electrophysiological effects of amiodarone, the sinus node might be the responsible for the attenuation of the cardiovascular reflexes found in the present study.
Resumo:
Angiotensin-converting enzyme inhibitors have been shown to improve splanchnic perfusion in distinct shock states. We hypothesized that enalaprilat potentiates the benefits of early fluid resuscitation in severe experimental sepsis, particularly in the splanchnic region. Anesthetized and mechanically ventilated mongrel dogs received an intravenous infusion of live Escherichia coli over a period of 30 min. Thereafter, two interventions were performed: fluid infusion (normal saline, 32 mL/kg over 30 min) and enalaprilat infusion (0.02 mg kg-1 min-1 for 60 min) in randomized groups. The following groups were studied: controls (fluid infusion, N = 4), E1 (enalaprilat infusion followed by fluid infusion, N = 5) and E2 (fluid infusion followed by enalaprilat infusion, N = 5). All animals were observed for a 120 min after bacterial infusion. Mean arterial pressure, cardiac output (CO), portal vein blood flow (PVBF), systemic and regional oxygen-derived variables, and lactate levels were measured. Rapid and progressive reductions in CO and PVBF were induced by the infusion of live bacteria, while minor changes were observed in mean arterial pressure. Systemic and regional territories showed a significant increase in oxygen extraction and lactate levels. Widening venous-arterial and portal-arterial pCO2 gradients were also detected. Fluid replacement promoted transient benefits in CO and PVBF. Enalaprilat after fluid resuscitation did not affect systemic or regional hemodynamic variables. We conclude that in this model of normotensive sepsis inhibition of angiotensin-converting enzyme did not interfere with the course of systemic or regional hemodynamic and oxygen-derived variables.
Resumo:
[N. 1:1110000].
Resumo:
We described angiotensin-I-converting enzyme (ACE) isoforms with molecular masses of 190, 90, and 65 kDa in the urine of normotensive offspring of hypertensive subjects. Since they did not appear in equal amounts, we suggested that 90 kDa ACE might be a marker for hypertension. We evaluated the endothelial response in normotensive offspring with or without family history of hypertension and its association with the 90 kDa ACE in urine. Thirty-five normotensive subjects with a known family history of hypertension and 20 subjects without a family history of hypertension, matched for age, sex, body weight, and blood pressure, were included in the study. Endothelial function was assessed by ultrasound and a sample of urine was collected for determination of ACE isoforms. In the presence of a family history of hypertension and detection of 90 kDa ACE, we noted a maximal flow mediated dilation of 12.1 ± 5.0 vs 16.1 ± 6.0% in those without a previous history of hypertension and lacking urinary 90 kDa ACE (P < 0.05). In subjects with a family history of hypertension and presenting 90 kDa ACE, there were lower levels of HDL-cholesterol (P < 0.05) and higher levels of triglycerides (P < 0.05). Subjects with 90 kDa ACE irrespective of hypertensive history presented a trend for higher levels of triglycerides and HDL-cholesterol (P = 0.06) compared to subjects without 90 kDa ACE. Our data suggest that the 90 kDa ACE may be a marker for hypertension which may be related to the development of early atherosclerotic changes.
Resumo:
Malignant hypertension seems to be the consequence of very high blood pressure. Furthermore, an increase in sympathetic and renin-angiotensin system activity is considered to be the main mechanisms producing malignant hypertension. In the present study, 10 offspring of malignant hypertensive (OMH) parents (age 28 ± 5 years, 7 males, 3 females, 2 white and 8 non-white) and 10 offspring of normotensive (ONT) parents (age 28 ± 6 years, 2 males, 8 females, 3 white and 7 non-white) were evaluated. The OMH group had significantly higher (P < 0.05) casual blood pressure (125 ± 10/81 ± 5 mmHg) compared with ONT (99 ± 13/67 ± 5 mmHg). The increase in blood pressure was greater in OMH (Δ SBP = 17 ± 2 vs Δ SBP = 9 ± 1 mmHg in ONT) during cold pressor testing, but they had a lower increase in heart rate (Δ HR = 13 ± 2 vs Δ HR = 20 ± 3 bpm in ONT) during isometric exercise (handgrip test). Sympathetic activity, measured by microneurography, was significantly higher (P < 0.05) before exercise in OMH (17 ± 6 vs 11 ± 4 burst/min in ONT) and exhibited a greater increase (Δ = 18 ± 10 vs Δ = 8 ± 3 burst/min in ONT) during isometric exercise. This study showed increased sympathetic activity in OMH before exercise and a greater response during isometric exercise, suggesting an autonomic abnormality before exercise and a greater sympathetic response to physical stress in OMH compared to ONT.
Resumo:
Multiple cell membrane alterations have been reported to be the cause of various forms of hypertension. The present study focuses on the lipid portion of the membranes, characterizing the microviscosity of membranes reconstituted with lipids extracted from the aorta and mesenteric arteries of spontaneously hypertensive (SHR) and normotensive control rat strains (WKY and NWR). Membrane-incorporated phospholipid spin labels were used to monitor the bilayer structure at different depths. The packing of lipids extracted from both aorta and mesenteric arteries of normotensive and hypertensive rats was similar. Lipid extract analysis showed similar phospholipid composition for all membranes. However, cholesterol content was lower in SHR arteries than in normotensive animal arteries. These findings contrast with the fact that the SHR aorta is hyporeactive while the SHR mesenteric artery is hyperreactive to vasopressor agents when compared to the vessels of normotensive animal strains. Hence, factors other than microviscosity of bulk lipids contribute to the vascular smooth muscle reactivity and hypertension of SHR. The excess cholesterol in the arteries of normotensive animal strains apparently is not dissolved in bulk lipids and is not directly related to vascular reactivity since it is present in both the aorta and mesenteric arteries. The lower cholesterol concentrations in SHR arteries may in fact result from metabolic differences due to the hypertensive state or to genes that co-segregate with those that determine hypertension during the process of strain selection.
Drag reduction by polyethylene glycol in the tail arterial bed of normotensive and hypertensive rats
Resumo:
This study was designed to evaluate the effect of drag reducer polymers (DRP) on arteries from normotensive (Wistar) and spontaneously hypertensive rats (SHR). Polyethylene glycol (PEG 4000 at 5000 ppm) was perfused in the tail arterial bed with (E+) and without endothelium (E-) from male, adult Wistar (N = 14) and SHR (N = 13) animals under basal conditions (constant flow at 2.5 mL/min). In these preparations, flow-pressure curves (1.5 to 10 mL/min) were constructed before and 1 h after PEG 4000 perfusion. Afterwards, the tail arterial bed was fixed and the internal diameters of the arteries were then measured by microscopy and drag reduction was assessed based on the values of wall shear stress (WSS) by computational simulation. In Wistar and SHR groups, perfusion of PEG 4000 significantly reduced pulsatile pressure (Wistar/E+: 17.5 ± 2.8; SHR/E+: 16.3 ± 2.7%), WSS (Wistar/E+: 36; SHR/E+: 40%) and the flow-pressure response. The E- reduced the effects of PEG 4000 on arteries from both groups, suggesting that endothelial damage decreased the effect of PEG 4000 as a DRP. Moreover, the effects of PEG 4000 were more pronounced in the tail arterial bed from SHR compared to Wistar rats. In conclusion, these data demonstrated for the first time that PEG 4000 was more effective in reducing the pressure-flow response as well as WSS in the tail arterial bed of hypertensive than of normotensive rats and these effects were amplified by, but not dependent on, endothelial integrity. Thus, these results show an additional mechanism of action of this polymer besides its mechanical effect through the release and/or bioavailability of endothelial factors.
Resumo:
Janamittakaavat: Duytsche mylen 15 in een graat ; Engelsche mylen 60 in een graat ; Fransche mylen of urengaans.
Resumo:
Memoria de m??ster (Universidad de Ja??n-FUNIBER, 2012)
Resumo:
Resumen basado en el de la publicaci??n
Resumo:
A number of vegetables have a high nitrate content which after ingestion can be reduced to 36 nitrite by oral bacteria, and further to vasoprotective nitric oxide endogenously. Two separate 37 randomly controlled, single blind, cross-over, postprandial studies were performed in 38 normotensive volunteers. Ambulatory blood pressure was measured over a 24 h period 39 following consumption of either four doses of beetroot juice (BJ) 0 g, 100 g, 250 g and 500 g 40 (n = 18) or three bread products, control bread (0 g beetroot), red beetroot and white beetroot 41 enriched breads (n =14). Total urinary nitrate/nitrite (NOx) was measured at baseline, 2, 4 42 and 24 h post ingestion. BJ consumption significantly, and in a near dose dependent manner, 43 lowered systolic (P <0.01) and diastolic BP (P <0.001) over a period of 24 h, compared to 44 water control. Furthermore, bread products enriched with 100 g red or white beetroot lowered 45 systolic and diastolic BP over a period of 24 h (red beetroot enriched bread, P <0.05), with no 46 statistical differences between varieties. Total urinary NOx significantly increased following 47 consumption of 100 g (P<0.01), 250 g (P <0.001) and 500 g BJ (P <0.001) and after red 48 beetroot bread (P <0.05), but did not reach significance for white beetroot bread compared to 49 the no beetroot condition. These studies demonstrated significant hypotensive effects of a low 50 dose (100 g) of beetroot which was unaffected by processing, or the presence of betacyanins. 51 This data strengthens the evidence for cardioprotective BP lowering effects of dietary nitrate-52 rich vegetables.
Resumo:
This study shows the distribution and density of adenosine A1 receptor (A(1)R) within the nucleus tractus solitarii (NTS) of Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR) from birth to adulthood (1, 15, 30 and 90 days old). The NTS shows heterogeneous distribution of A(1)R in dorsomedial/dorsolateral, subpostremal and medial/intermediate subnuclei. A(1)R decrease from rostral to caudal within dorsomedial/dorsolateral subnucleus in 15-, 30- and 90-day-old WKY and SHR. A(1)R increase from rostral to caudal subpostremal subnucleus in 30- and 90-day-old WKY, and in 15-, 30- and 90-day-old SHR. Furthermore, A(1)Rs are increased in SHR as compared with WKY within dorsomedial/dorsolateral in 30- and 90-day-old and within subpostremal of 15-, 30- and 90-day-old rats. Finally, A(1)Rs increase from 1- to 30-day-old rats. Medial/intermediate did not show any changes in A(1)R from rostral to caudal levels, age or strain. In summary, our result highlights the importance of A1 adenosine system regarding the neural control of blood pressure and the development of hypertension.
Resumo:
Background and purpose: The present study was designed to assess whether cyclooxygenase-2 (COX-2) activation is involved in the effects of chronic aldosterone treatment on endothelial function of mesenteric resistance arteries (MRA) from Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Experimental approach: Relaxation to acetylcholine was measured in MRA from both untreated and aldosterone-treated strains. Vasomotor responses to prostacyclin and U46619 were also analysed. Release of 6-oxo-prostaglandin (PG)F(1 alpha) and thromboxane B(2) (TxB(2)) was determined by enzyme immunoassay. COX-2 protein expression was measured by western blot. Key results: Aldosterone reduced acetylcholine relaxation in MRA from both strains. In MRA from both aldosterone-treated strains the COX-1/2 or COX-2 inhibitor (indomethacin and NS-398, respectively), Tx2 synthesis inhibitor (furegrelate), prostacyclin synthesis inhibitor (tranylcypromine) or Tx2/PG2 receptor antagonist (SQ 29 548), but not COX-1 inhibitor SC-560, increased acetylcholine relaxation. In untreated rats this response was increased only in SHR. Prostacyclin elicited a biphasic vasomotor response: lower concentrations elicited relaxation, whereas higher concentrations elicited contraction that was reduced by SQ 29 548. Aldosterone increased the acetylcholine-stimulated production of 6-oxo-PGF(1 alpha) and TxB(2) in MRA from both strains. COX-2 expression was higher in both strains of rats treated with aldosterone. Conclusions and implications: Chronic treatment with aldosterone impaired endothelial function in MRA under normotensive and hypertensive conditions by increasing COX-2-derived prostacyclin and thromboxane A(2). As endothelial dysfunction participates in the pathogenesis of many cardiovascular disorders we hypothesize that anti-inflammatory drugs, specifically COX-2 inhibitors, could ameliorate vascular damage in patients with elevated aldosterone production.
Resumo:
The effects of exercise training on systolic blood pressure (BP), insulin sensitivity, and plasma membrane GLUT4 protein content in spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats were compared. 16 SHR and 16 WKY male rats, aged 6 months, were randomized into sedentary and trained (tread-mill running, 5 days/week, 60 min/day for 10 weeks) groups (n = 8/group). At baseline, SHR had lower insulin sensitivity than WKY rats, however, there were no differences between WKY and SHR GLUT4 expression. The 10-week training reduced BP by similar to 19% in SHR, improved insulin sensitivity by similar to 24% in SHR, but not in WKY, and increased GLUT4 expression in both animal models. Compared to the sedentary group, there was an increase of GLUT4 in WKY rats by similar to 25% in the heart, by similar to 23% in the gastrocnemius, and by similar to 15% in the fat tissue. Trained SHR presented an increase in GLUT4 of similar to 21%, similar to 20%, and similar to 14%, in the same tissues, respectively. There were no differences between SHR and WKY rats in post-training GLUT4 expression. We conclude that training determined BP and insulin resistance reduction in SHR, and increased GLUT4 expression in both normotensive and hypertensive rats. However, considering the similar rise in GLUT4-induced training in SHR and WKY, it is possible that GLUT4 levels in plasma membrane fraction do not have a pivotal role in the exercise-induced improvement of insulin sensitivity in SHR.