997 resultados para Nonequilibrium statistical mechanics


Relevância:

90.00% 90.00%

Publicador:

Resumo:

A Brownian pump of particles powered by a stochastic flashing ratchet mechanism is studied. The pumping device is embedded in a finite region and bounded by particle reservoirs. In the steady state, we exactly calculate the spatial density profile, the concentration ratio between both reservoirs and the particle flux. We propose a simulation framework for the consistent evaluation of such observable quantities.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Onsager's symmetry theorem for transport near equilibrium is extended in two directions. A corresponding symmetry is obtained for linear transport near nonequilibrium stationary states, and the class of transport laws is extended to include nonlocality in both space and time. The results are formally exact and independent of any specific model for the nonequilibrium state.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We study steady states in d-dimensional lattice systems that evolve in time by a probabilistic majority rule, which corresponds to the zero-temperature limit of a system with conflicting dynamics. The rule satisfies detailed balance for d=1 but not for d>1. We find numerically nonequilibrium critical points of the Ising class for d=2 and 3.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The climate belongs to the class of non-equilibrium forced and dissipative systems, for which most results of quasi-equilibrium statistical mechanics, including the fluctuation-dissipation theorem, do not apply. In this paper we show for the first time how the Ruelle linear response theory, developed for studying rigorously the impact of perturbations on general observables of non-equilibrium statistical mechanical systems, can be applied with great success to analyze the climatic response to general forcings. The crucial value of the Ruelle theory lies in the fact that it allows to compute the response of the system in terms of expectation values of explicit and computable functions of the phase space averaged over the invariant measure of the unperturbed state. We choose as test bed a classical version of the Lorenz 96 model, which, in spite of its simplicity, has a well-recognized prototypical value as it is a spatially extended one-dimensional model and presents the basic ingredients, such as dissipation, advection and the presence of an external forcing, of the actual atmosphere. We recapitulate the main aspects of the general response theory and propose some new general results. We then analyze the frequency dependence of the response of both local and global observables to perturbations having localized as well as global spatial patterns. We derive analytically several properties of the corresponding susceptibilities, such as asymptotic behavior, validity of Kramers-Kronig relations, and sum rules, whose main ingredient is the causality principle. We show that all the coefficients of the leading asymptotic expansions as well as the integral constraints can be written as linear function of parameters that describe the unperturbed properties of the system, such as its average energy. Some newly obtained empirical closure equations for such parameters allow to define such properties as an explicit function of the unperturbed forcing parameter alone for a general class of chaotic Lorenz 96 models. We then verify the theoretical predictions from the outputs of the simulations up to a high degree of precision. The theory is used to explain differences in the response of local and global observables, to define the intensive properties of the system, which do not depend on the spatial resolution of the Lorenz 96 model, and to generalize the concept of climate sensitivity to all time scales. We also show how to reconstruct the linear Green function, which maps perturbations of general time patterns into changes in the expectation value of the considered observable for finite as well as infinite time. Finally, we propose a simple yet general methodology to study general Climate Change problems on virtually any time scale by resorting to only well selected simulations, and by taking full advantage of ensemble methods. The specific case of globally averaged surface temperature response to a general pattern of change of the CO2 concentration is discussed. We believe that the proposed approach may constitute a mathematically rigorous and practically very effective way to approach the problem of climate sensitivity, climate prediction, and climate change from a radically new perspective.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We performed Monte Carlo simulations to investigate the steady-state critical behavior of a one-dimensional contact process with an aperiodic distribution of rates of transition. As in the presence of randomness, spatial fluctuations can lead to changes of critical behavior. For sufficiently weak fluctuations, we give numerical evidence to show that there is no departure from the universal critical behavior of the underlying uniform model. For strong spatial fluctuations, the analysis of the data indicates a change of critical universality class.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The concept of Fock space representation is developed to deal with stochastic spin lattices written in terms of fermion operators. A density operator is introduced in order to follow in parallel the developments of the case of bosons in the literature. Some general conceptual quantities for spin lattices are then derived, including the notion of generating function and path integral via Grassmann variables. The formalism is used to derive the Liouvillian of the d-dimensional Linear Glauber dynamics in the Fock-space representation. Then the time evolution equations for the magnetization and the two-point correlation function are derived in terms of the number operator. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider a charged Brownian gas under the influence of external and non-uniform electric, magnetic and mechanical fields, immersed in a non-uniform bath temperature. With the collision time as an expansion parameter, we study the solution to the associated Kramers equation, including a linear reactive term. To the first order we obtain the asymptotic (overdamped) regime, governed by transport equations, namely: for the particle density, a Smoluchowski- reactive like equation; for the particle's momentum density, a generalized Ohm's-like equation; and for the particle's energy density, a MaxwellCattaneo-like equation. Defining a nonequilibrium temperature as the mean kinetic energy density, and introducing Boltzmann's entropy density via the one particle distribution function, we present a complete thermohydrodynamical picture for a charged Brownian gas. We probe the validity of the local equilibrium approximation, Onsager relations, variational principles associated to the entropy production, and apply our results to: carrier transport in semiconductors, hot carriers and Brownian motors. Finally, we outline a method to incorporate non-linear reactive kinetics and a mean field approach to interacting Brownian particles. © 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We consider a charged Brownian gas under the influence of external, static and uniform electric and magnetic fields, immersed in a uniform bath temperature. We obtain the solution for the associated Langevin equation, and thereafter the evolution of the nonequilibrium temperature towards a nonequilibrium (hot) steady state. We apply our results to a simple yet relevant Brownian model for carrier transport in GaAs. We obtain a negative differential conductivity regime (Gunn effect) and discuss and compare our results with the experimental results. © 2013.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We investigate the interface dynamics of the two-dimensional stochastic Ising model in an external field under helicoidal boundary conditions. At sufficiently low temperatures and fields, the dynamics of the interface is described by an exactly solvable high-spin asymmetric quantum Hamiltonian that is the infinitesimal generator of the zero range process. Generally, the critical dynamics of the interface fluctuations is in the Kardar-Parisi-Zhang universality class of critical behavior. We remark that a whole family of RSOS interface models similar to the Ising interface model investigated here can be described by exactly solvable restricted high-spin quantum XXZ-type Hamiltonians. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The cyclic compression of several granular systems has been simulated with a molecular dynamics code. All the samples consisted of bidimensional, soft, frictionless and equal-sized particles that were initially arranged according to a squared lattice and were compressed by randomly generated irregular walls. The compression protocols can be described by some control variables (volume or external force acting on the walls) and by some dimensionless factors, that relate stiffness, density, diameter, damping ratio and water surface tension to the external forces, displacements and periods. Each protocol, that is associated to a dynamic process, results in an arrangement with its own macroscopic features: volume (or packing ratio), coordination number, and stress; and the differences between packings can be highly significant. The statistical distribution of the force-moment state of the particles (i.e. the equivalent average stress multiplied by the volume) is analyzed. In spite of the lack of a theoretical framework based on statistical mechanics specific for these protocols, it is shown how the obtained distributions of mean and relative deviatoric force-moment are. Then it is discussed on the nature of these distributions and on their relation to specific protocols.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We analyze, using the replica method of statistical mechanics, the theoretical performance of coded code-division multiple-access (CDMA) systems in which regular low-density parity-check (LDPC) codes are used for channel coding.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

MSC 2010: 15A15, 15A52, 33C60, 33E12, 44A20, 62E15 Dedicated to Professor R. Gorenflo on the occasion of his 80th birthday

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We introduce a simple mean-field lattice model to describe the behavior of nematic elastomers. This model combines the Maier-Saupe-Zwanzig approach to liquid crystals and an extension to lattice systems of the Warner-Terentjev theory of elasticity, with the addition of quenched random fields. We use standard techniques of statistical mechanics to obtain analytic solutions for the full range of parameters. Among other results, we show the existence of a stress-strain coexistence curve below a freezing temperature, analogous to the P-V diagram of a simple fluid, with the disorder strength playing the role of temperature. Below a critical value of disorder, the tie lines in this diagram resemble the experimental stress-strain plateau and may be interpreted as signatures of the characteristic polydomain-monodomain transition. Also, in the monodomain case, we show that random fields may soften the first-order transition between nematic and isotropic phases, provided the samples are formed in the nematic state.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We prove a Goldstone theorem in thermal relativistic quantum field theory, which relates spontaneous symmetry breaking to the rate of spacelike decay of the two-point function. The critical rate of fall-off coincides with that of the massless free scalar field theory. Related results and open problems are briefly discussed. (C) 2011 American Institute of Physics. [doi:10.1063/1.3526961]