953 resultados para Non-structural concrete
Resumo:
The structural engineering community in Brazil faces new challenges with the recent occurrence of high intensity tornados. Satellite surveillance data shows that the area covering the south-east of Brazil, Uruguay and some of Argentina is one of the world most tornado-prone areas, second only to the infamous tornado alley in central United States. The design of structures subject to tornado winds is a typical example of decision making in the presence of uncertainty. Structural design involves finding a good balance between the competing goals of safety and economy. This paper presents a methodology to find the optimum balance between these goals in the presence of uncertainty. In this paper, reliability-based risk optimization is used to find the optimal safety coefficient that minimizes the total expected cost of a steel frame communications tower, subject to extreme storm and tornado wind loads. The technique is not new, but it is applied to a practical problem of increasing interest to Brazilian structural engineers. The problem is formulated in the partial safety factor format used in current design codes, with all additional partial factor introduced to serve as optimization variable. The expected cost of failure (or risk) is defined as the product of a. limit state exceedance probability by a limit state exceedance cost. These costs include costs of repairing, rebuilding, and paying compensation for injury and loss of life. The total expected failure cost is the sum of individual expected costs over all failure modes. The steel frame communications, tower subject of this study has become very common in Brazil due to increasing mobile phone coverage. The study shows that optimum reliability is strongly dependent on the cost (or consequences) of failure. Since failure consequences depend oil actual tower location, it turn,,; out that different optimum designs should be used in different locations. Failure consequences are also different for the different parties involved in the design, construction and operation of the tower. Hence, it is important that risk is well understood by the parties involved, so that proper contracts call be made. The investigation shows that when non-structural terms dominate design costs (e.g, in residential or office buildings) it is not too costly to over-design; this observation is in agreement with the observed practice for non-optimized structural systems. In this situation, is much easier to loose money by under-design. When by under-design. When structural material cost is a significant part of design cost (e.g. concrete dam or bridge), one is likely to lose significantmoney by over-design. In this situation, a cost-risk-benefit optimization analysis is highly recommended. Finally, the study also shows that under time-varying loads like tornados, the optimum reliability is strongly dependent on the selected design life.
Resumo:
The properties of recycled aggregate produced from mixed (masonry and concrete) construction and demolition (C&D) waste are highly variable, and this restricts the use of such aggregate in structural concrete production. The development of classification techniques capable of reducing this variability is instrumental for quality control purposes and the production of high quality C&D aggregate. This paper investigates how the classification of C&D mixed coarse aggregate according to porosity influences the mechanical performance of concrete. Concretes using a variety of C&D aggregate porosity classes and different water/cement ratios were produced and the mechanical properties measured. For concretes produced with constant volume fractions of water, cement, natural sand and coarse aggregate from recycled mixed C&D waste, the compressive strength and Young modulus are direct exponential functions of the aggregate porosity. Sink and float technique is a simple laboratory density separation tool that facilitates the separation of cement particles with lower porosity, a difficult task when done only by visual sorting. For this experiment, separation using a 2.2 kg/dmA(3) suspension produced recycled aggregate (porosity less than 17%) which yielded good performance in concrete production. Industrial gravity separators may lead to the production of high quality recycled aggregate from mixed C&D waste for structural concrete applications.
Resumo:
Fine recycled aggregates are seen as the last choice in recycling for concrete production. Many references quote their detrimental influence on the most important characteristics of concrete: compressive and tensile strength; modulus of elasticity; water absorption; shrinkage: carbonation and chloride penetration. These two last characteristics are fundamental in terms of the long-term durability of reinforced or prestressed concrete. In the experimental research carried out at IST, part of which has already been published, different concrete mixes (with increasing rates of substitution of fine natural aggregates sand - with fine recycled aggregates from crushed concrete) were prepared and tested. The results were then compared with those for a reference concrete with exactly the same composition and grading curve, but with no recycled aggregates. This paper presents the main results of this research for water absorption by immersion and capillarity, chloride penetration (by means of the chloride migration coefficient), and carbonation resistance, drawing some conclusions on the feasibility of using this type of aggregate in structural concrete, while taking into account any ensuing obvious positive environmental impact.
Resumo:
Com a crescente divulgação no mercado português de métodos construtivos de alvenaria resistente tipo Termoargila, compara-se neste trabalho a sua rentabilidade económica, em relação à execução em betão armado, com paredes não estruturais de alvenaria. Estudam-se três tipologias de estruturas com geometria regular (1 piso, 2 pisos, 4 pisos), em zonas sísmicas A e D segundo o Regulamento de Segurança e Acções. A análise dos resultados permite verificar a eficiência dos métodos construtivos para cada tipologia de edifício, assim como os seus custos. Analisa-se se o motivo pelo qual em Portugal não é corrente a aplicação de soluções estruturais de alvenaria resistente tipo Termoargila, se unicamente económico ou se existe uma inércia dos intervenientes na construção, privilegiando os métodos construtivos tradicionais.
Resumo:
The reuse of structural concrete elements to produce new concrete aggregates is accepted as an alternative to dumping them and is favourable to the sustainability of natural reserves. Even though the construction sector is familiar with the use of coarse recycled concrete aggregates, the recycled concrete fines are classified as less noble resources. This research sets out to limit the disadvantages associated with the performance of concrete containing fine recycled concrete aggregates through the use of superplasticisers. Two types of latest generation superplasticisers were used that differ in terms of water reduction capacity and robustness, and the workability, density and compressive strength of each of the compositions analysed were then compared: a reference concrete, with no plasticisers, and concrete mixes with the superplasticisers. For each concrete family mixes with 0%, 10%, 30%, 50% and 100% replacement ratios of fine natural aggregates (FNA) by fine recycled concrete aggregates (FRA) were analysed. Concrete with incorporation of recycled aggregates was found to have poorer relative performance. The mechanical performance of concrete with recycled aggregates and superplasticisers was generally superior to that of the reference concrete with no admixtures and of conventional concrete with lower performance superplasticisers.
Resumo:
O presente trabalho tem como objetivo o cálculo e desenvolvimento de um projecto estrutural de um edifício público. O edifício em questão será construído em Camama, Angola. Ao longo deste trabalho são apresentadas as diferentes etapas necessárias para a conceção do projeto estrutural de um edifício em betão armado. As opções consideradas na realização deste projeto e as respetivas justificações, podem ser encontradas ao longo deste documento. Estas são reforçadas através da apresentação de plantas estruturais com os seus elementos e os cálculos considerados necessários. Este trabalho foi elaborado com o apoio do programa de cálculo ROBOT Structural Analysis para a caracterização e análise das ações atuantes. Apesar da localização do edifício ser em Angola, as ações e as bases de projeto são definidas de acordo com as normas portuguesas. A utilização destas normas foi possível através de referências comuns a ambos os países, bem como algumas considerações tendo em conta as condições de construção em Luanda. Para a definição do projeto estrutural foram fornecidas as plantas de arquitetura, cortes e alçados do edifício. Estas plantas apresentam os respetivos materiais não estruturais, a utilizar após a sua construção. Em adição foi fornecida uma sondagem geotécnica do terreno de construção.
Resumo:
Tese de Doutoramento - Civil Engineering
Resumo:
Projeto de Investigação integrado de mestrado Internacional em Sustentabilidade do Ambiente Construído
Resumo:
Dissertação de mestrado integrado em Engenharia Civil
Resumo:
Non-structural protein 2 (NS2) plays an important role in hepatitis C virus (HCV) assembly, but neither the exact contribution of this protein to the assembly process nor its complete structure are known. In this study we used a combination of genetic, biochemical and structural methods to decipher the role of NS2 in infectious virus particle formation. A large panel of NS2 mutations targeting the N-terminal membrane binding region was generated. They were selected based on a membrane topology model that we established by determining the NMR structures of N-terminal NS2 transmembrane segments. Mutants affected in virion assembly, but not RNA replication, were selected for pseudoreversion in cell culture. Rescue mutations restoring virus assembly to various degrees emerged in E2, p7, NS3 and NS2 itself arguing for an interaction between these proteins. To confirm this assumption we developed a fully functional JFH1 genome expressing an N-terminally tagged NS2 demonstrating efficient pull-down of NS2 with p7, E2 and NS3 and, to a lower extent, NS5A. Several of the mutations blocking virus assembly disrupted some of these interactions that were restored to various degrees by those pseudoreversions that also restored assembly. Immunofluorescence analyses revealed a time-dependent NS2 colocalization with E2 at sites close to lipid droplets (LDs) together with NS3 and NS5A. Importantly, NS2 of a mutant defective in assembly abrogates NS2 colocalization around LDs with E2 and NS3, which is restored by a pseudoreversion in p7, whereas NS5A is recruited to LDs in an NS2-independent manner. In conclusion, our results suggest that NS2 orchestrates HCV particle formation by participation in multiple protein-protein interactions required for their recruitment to assembly sites in close proximity of LDs.
Resumo:
Fly ash was used in this evaluation study to replace 15% of the cement in Class D-57 structural concrete containing ASTM C494 Type B, retarding admixtures. Two Class "C" ashes and one Class "F" ash from Iowa approved sources were examined in each mix. When Class "C" ashes were used, they were substituted on the basis of 1.0 pound for each pound of cement removed. When Class "F" ash was used, it was substituted on the basis of 1.25 pounds of ash for each pound of cement removed. Compressive strengths of the retarded mixes, with and without fly ash, were determined at 7, 28 and 56 days of age. In most cases, with few exceptions, the mixes containing the fly ash exhibited higher strengths than the same concrete mix without the fly ash. The exceptions were the 7, 28, and 56 days of the mixes containing Class F ash. The freeze/thaw durability of the concrete studied was not affected by the presence of fly ash. The data obtained suggested that the present Class D-57 structural concrete mix with retarding admixtures can be modified to allow the substitution of 15% of the cement with an approved fly ash when Class III coarse aggregates are used. Setting times of the concretes were not materially changed due to the incorporation of fly ash.
Resumo:
Portland cement concrete is an outstanding structural material but stresses and cracks often occur in large structures due to drying shrinkage. The objective of this research was to determine the change in length due to loss of moisture from placement through complete drying of portland cement concrete. The drying shrinkage was determined for four different combinations of Iowa DOT structural concrete mix proportions and materials. The two mix proportions used were an Iowa DOT D57 (bridge deck mix proportions) and a water reduced modified C4 mix. Three 4"x 4"x 18" beams were made for each mix. After moist curing for three days, all beams were maintained in laboratory dry air and the length and weight were measured at 73°F ± 3°F. The temperature was cycled on alternate days from 73°F to 90°F through four months. From four months through six months, the temperature was cycled one day at 73°F and six days at 130°F. It took approximately six months for the concrete to reach a dry condition with these temperatures. The total drying shrinkage for the four mixes varied from .0106 in. to .0133 in. with an average of .0120 in. The rate of shrinkage was approximately .014% shrinkage per 1% moisture loss for all four mixes. The rate and total shrinkage for all four mixes was very similar and did not seem to depend on the type of coarse aggregate or the use of a retarder.
Resumo:
Cold in-place recycling (CIR) has become an attractive method for rehabilitating asphalt roads that have good subgrade support and are suffering distress related to non-structural aging and cracking of the pavement layer. Although CIR is widely used, its use could be expanded if its performance were more predictable. Transportation officials have observed roads that were recycled under similar circumstances perform very differently for no clear reason. Moreover, a rational mix design has not yet been developed, design assumptions regarding the structural support of the CIR layer remain empirical and conservative, and there is no clear understanding of the cause-effect relationships between the choices made during the design/construction process and the resulting performance. The objective of this project is to investigate these relationships, especially concerning the age of the recycled pavement, cumulative traffic volume, support conditions, aged engineering properties of the CIR materials, and road performance. Twenty-four CIR asphalt roads constructed in Iowa from 1986 to 2004 were studied: 18 were selected from a sample of roads studied in a previous research project (HR-392), and 6 were selected from newer CIR projects constructed after 1999. This report describes the results of comprehensive field and laboratory testing for these CIR asphalt roads. The results indicate that the modulus of the CIR layer and the air voids of the CIR asphalt binder were the most important factors affecting CIR pavement performance for high-traffic roads. For low-traffic roads, the wet indirect tensile strength significantly affected pavement performance. The results of this research can help identify changes that should be made with regard to design, material selection, and construction in order to improve the performance and cost-effectiveness of future recycled roads.
Resumo:
Le virus respiratoire syncytial (RSV) est un virus à ARN de polarité négative. Les études démontrent que toute la population sera infectée par ce virus au moins deux fois avant l’âge de 3 ans. Le RSV peut provoquer plusieurs pathologies respiratoires telles que la bronchiolite aiguë et la pneumonie. Les infections sévères corrèlent avec le développement de l’asthme. Lors d’une infection virale, les particules du RSV sont détectées par le senseur RIG-I qui induit l’activation des facteurs de transcription NF-κB et IRF-3. Respectivement, les facteurs de transcription activeront les réponses inflammatoire et antivirale. Au coeur des pathologies induites par le RSV se trouve une réponse immunitaire mal adaptée. Plus précisément, par l’entremise de NF-κB, le RSV provoque une production exagérée de cytokines et chimiokines qui induisent une réponse inflammatoire démesurée provoquant du dommage tissulaire. Paradoxalement, le RSV est capable d’échapper à la réponse antivirale. Ces deux phénomènes sont contrôlés par l’entremise des protéines non structurales NS1 et NS2. Le mécanisme délimitant le mode d’action de NS1 et NS2 sur la réponse antivirale reste à être déterminé. Avec pour objectif d’élucider comment NS1 et NS2 inhibent la réponse antivirale, nous avons investigué le mécanisme de reconnaissance de l’hôte vis-à-vis de RSV. Nous démontrerons, pour la première fois, que le senseur cytosolique MDA5 est impliqué dans la réponse antivirale contre le RSV. Nous présenterons des résultats préliminaires qui suggèrent que le rôle de MDA5 est non redondant à RIG-I. À l’aide d’ARN interférant dirigé contre RIG-I et de transfection de MDA5, nous démontrerons que MDA5 ne contribue pas à la phosphorylation d’IRF-3, mais plutôt qu’elle régit la stabilité du facteur de transcription. Nous démontrerons aussi que, contrairement à l’hypothèse actuelle sur le fonctionnement de NS1 et NS2, l’inhibition de ces derniers ne provoque pas une augmentation de la cytokine antivirale IFN−β. Cependant, l’expression ectopique de NS1 et NS2 réduit l’activité du promoteur de l’IFN-β et de la protéine cytoplasmic antivirale ISG56 lorsqu’elle est mesurée par essai luciférase.
Resumo:
A study was designed to examine the relationships between protein, condensed tannin and cell wall carbohydrate content and composition and the nutritional quality of seven tropical legumes (Desmodium ovalifolium, Flemingia macrophylla, Leucaena leucocephala, L pallida, L macrophylla, Calliandra calothyrsus and Clitotia fairchildiana). Among the legume species studied, D ovalifolium showed the lowest concentration of nitrogen, while L leucocephala showed the highest. Fibre (NDF) content was lowest in C calothyrsus, L Leucocephala and L pallida and highest in L macrophylla, which had no measurable condensed tannins. The highest tannin concentration was found in C calothyrsus. Total non-structural polysaccharides (NSP) varied among legumes species (lowest in C calothyrsus and highest in D ovalifolium), and glucose and uronic acids were the most abundant carbohydrate constituents in all legumes. Total NSP losses were lowest in F macrophylla and highest in L leucocephala and L pallida. Gas accumulation and acetate and propionate levels were 50% less with F macrophylla and D ovalifolium as compared with L leucocephala. The highest levels of branched-chain fatty acids were observed with non-tanniniferous legumes, and negative concentrations were observed with some of the legumes with high tannin content (D ovalifolium and F macrophylla). Linear regression analysis showed that the presence of condensed tannins was more related to a reduction of the initial rate of gas production (0-48 h) than to the final amount of gas produced or the extent (144h) of dry matter degradation, which could be due to differences in tannin chemistry. Consequently, more attention should be given in the future to elucidating the impact of tannin structure on the nutritional quality of tropical forage legumes. (C) 2003 Society of Chemical Industry.