961 resultados para Non starter lactic acid bacteria
Resumo:
The industrial production of ethanol is affected mainly by contamination by lactic acid bacteria besides others factors that act synergistically like increased sulfite content, extremely low pH, high acidity, high alcoholic content, high temperature and osmotic pressure. In this research two strains of Saccharomyces cerevisiae PE-2 and M-26 were tested regarding the alcoholic fermentation potential in highly stressed conditions. These strains were subjected to values up to 200 mg NaHSO3 l(-1), 6 g lactic acid l(-1), 9.5% (w/v) ethanol and pH 3.6 during fermentative processes. The low pH (3.6) was the major stressing factor on yeasts during the fermentation. The M-26 strain produced higher acidity than the other, with higher production of succinic acid, an important inhibitor of lactic bacteria. Both strains of yeasts showed similar performance during the fermentation, with no significant difference in cell viability.
Resumo:
Seventy-two lactic acid producing bacterial isolates (excluding streptococci) were cultured from the gastrointestinal tract of six horses. Two of the horses were orally dosed with raftilose to induce lactic acidosis and laminitis while the remaining four were maintained on a roughage diet. Near complete 16S rDNA was amplified by PCR from the genomic DNA of each isolate. Following RFLP analysis with the restriction enzymes MboI, HhaI and HinfI, the PCR products from the IS isolates that produced L- and/or D-lactate were subsequently cloned and sequenced. DNA sequence analysis indicated that the majority of the isolates were closely related to species within the genus Lactobacillus, including Lactobacillus salivarius, Lactobacillus mucosae and Lactobacillus delbrueckii. Four isolates were closely related to Mitsuokella jalaludinii. Lactic acid producing bacteria (LAB) from the equine gastrointestinal tract was dominated by representatives from the genus Lactobacillus, but also included D-lactate-producing bacteria closely related to M. jalaludinii. Identification and characterization of LAB from the equine gastrointestinal tract should contribute to our understanding and management of fermentative acidosis, ulceration of the stomach and laminitis. (c) 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Effects of medium supplementation and pH control on lactic acid production from brewer`s spent grain
Resumo:
A cellulose pulp obtained by chemical pre-treatment of brewer`s spent grain was saccharified by a commercial cellulase preparation and the produced hydrolysate (50 g/l glucose) was fermented to lactic acid by Lactobacillus delbrueckii. The effects of pH control and nutrient supplementation of the hydrolysate on fermentation performance were investigated. Addition of 5g/l yeast extract enhanced the lactic acid volumetric productivity that attained 0.53 g/l h, value 18% higher than that obtained from non-supplemented hydrolysate. Addition of the MRS broth medium components (except the carbon source) was still better, providing a productivity of 0.79 g/l h. In all the cases, the lactic acid yield factor was of 0.7 g/g glucose consumed, but the fermentations stopped after 24 h due to the pH drop from 6.0 to 4.2, resulting in large amounts of residual glucose (38-41 g/l). Fermentation runs pH-controlled at 6.0 gave better results than those where the initial pH was not further controlled. The best result, 35.54 g/l lactic acid (0.99 g/g glucose consumed) was obtained during the pH-controlled fermentation of hydrolysate medium supplemented with MRS components. The volumetric productivity at the end of this fermentation was 0.59 g/l h, with a maximum of 0.82 g/l h during the first 12 h. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
P>The aim of the present work was to evaluate the use of the kefir grains as a starter culture for tradicional milk kefir beverage and for cheese whey-based beverages production. Fermentation was performed by inoculating kefir grains in milk (ML), cheese whey (CW) and deproteinised cheese whey (DCW). Erlenmeyers containing kefir grains and different substrates were statically incubated for 72 h at 25 degrees C. Lactose, ethanol, lactic acid, acetic acid, acetaldehyde, ethyl acetate, isoamyl alcohol, isobutanol, 1-propanol, isopentyl alcohol and 1-hexanol were identified and quantified by high-performance liquid chromatography and GC-FID. The results showed that kefir grains were able to utilise lactose in 60 h from ML and 72 h from CW and DCW and produce similar amounts of ethanol (similar to 12 g L-1), lactic acid (similar to 6 g L-1) and acetic acid (similar to 1.5 g L-1) to those obtained during milk fermentation. Based on the chemical characteristics and acceptance in the sensory analysis, the kefir grains showed potential to be used for developing cheese whey-based beverages.
Resumo:
This study investigated the viability of probiotic (Lactobacillus acidophilus LA5, Lactobacillus rhamnosus LBA and Bifidobacterium animalis subsp. lactis BL-04) in milk fermented with Lactobacillus delbrueckii subsp. bulgaricus LB340 and Streptococcus thermophilus TAO (yoghurt - Y). Each probiotic strain was grown separately in co-culture with Y and in blends of different combinations. Blends affected fermentation time(s), pH and firmness during storage at 4 degrees C. The product made with Y plus B. animalis subsp. lactis and L. rhamnosus had counts of viable cells at the end of shelf life that met the minimum required to achieve probiotic effect. However, L. acidophilus and L. delbrueckii subsp. bulgaricus were inhibited.
Resumo:
Sensory acceptance of formulations of probiotic Minas fresh cheese was investigated. Cheeses were prepared and supplemented with Lactobacillus acidophilus (T1 - probiotic), Lactobacillus acidophilus + Streptococcus thermophilus (T2 - probiotic + starter) or produced with no addition of cultures (T3 - control). Sensory acceptance tests were performed after 7 and 14 days of storage at 5 degrees C, using a 9-point hedonic scale (1 = dislike extremely; 9 = like extremely). After 7 days, no significant difference was detected among cheeses T1, T2 and T3 (P > 0.05). After 14 days, cheeses T1 and T2 presented higher acceptance and differed significantly from cheeses T3. Cheeses T3 presented significant difference between 7 and 14 days of storage (P < 0.05), whereas probiotic cheeses T1 and T2 were stable in the same period (P > 0.05). The addition of L. acidophilus, either solely or in co-culture with a thermophilic starter culture, resulted in good acceptance of Minas fresh cheese, improving sensory performance of the product during storage.
Resumo:
To facilitate metabolic analysis, batch fermentations of Lactobacillus rhamnosus were carried out in a new defined medium. Biomass at 10.5 g/l and lactic acid at 67 g/l with a Y-P/S of 0.84 were achieved. The maximum specific growth rate and the average productivity were 0.49/h and 2.48 g/l.h, respectively. These are comparable to those of this organism and related organisms in complex media. Preliminary amino acid studies were also conducted, highlighting the importance of serine, asparagine, glutamine and cysteine. Kinetic analysis revealed that lactic acid production was predominantly growth-associated with growth associated and non-growth associated lactic acid constants of 0.389 mol/g-cell and 0.0025 mol/g-cell.h, respectively. Finally a kinetic model has been included to describe the fermentation of L. rhamnosus.
Resumo:
Lactic acid is the predominant acid present in the vagina. We evaluated the consequences of lactic acid, at physiological levels present in the vagina, on cytokine responses of peripheral blood mononuclear cells (PBMCs) obtained from 10 individuals in the presence or absence of bacterial lipopolysaccharide. Preincubation of PBMCs in 15 mM lactic acid before the addition of lipopolysaccharide resulted in a 246% mean increase in interleukin-23 (IL-23) secretion over that released in the presence of lipopolysaccharide alone (P=0.0068). The lipopolysaccharide-induced production of tumor necrosis factor-alpha, IL-6, IL-10 and IL-12 was unaffected by lactic acid. IL-23 stimulation was not observed if the lactic acid was neutralized before its addition to the culture medium or if hydrochloric acid was substituted for lactic acid. In the absence of lipopolysaccharide, lactic acid did not stimulate the production of IL-23 or any of the other cytokines. The increase in IL-23 production was proportional to the lactic acid concentration over a 15-60 mM range. We conclude that at body sites characterized by lactic acid accumulation, such as in the human vagina, exposure to gram-negative bacteria results in selective IL-23 production, leading to a subsequent preferential stimulation of the Th17 T lymphocyte pathway.
Resumo:
Dissertação de Mestrado em Tecnologia e Segurança Alimentar
Resumo:
Dissertation presented to obtain the Ph.D degree in Biology
Resumo:
Dissertation presented to obtain the PhD degree in Biology