1000 resultados para Noice Reduction
Resumo:
This paper presents an analysis of the stream cipher Mixer, a bit-based cipher with structural components similar to the well-known Grain cipher and the LILI family of keystream generators. Mixer uses a 128-bit key and 64-bit IV to initialise a 217-bit internal state. The analysis is focused on the initialisation function of Mixer and shows that there exist multiple key-IV pairs which, after initialisation, produce the same initial state, and consequently will generate the same keystream. Furthermore, if the number of iterations of the state update function performed during initialisation is increased, then the number of distinct initial states that can be obtained decreases. It is also shown that there exist some distinct initial states which produce the same keystream, resulting in a further reduction of the effective key space
Resumo:
The possibility of a surface inner sphere electron transfer mechanism leading to the coating of gold via the surface reduction of gold(I) chloride on metal and semi-metal oxide nanoparticles was investigated. Silica and zinc oxide nanoparticles are known to have very different surface chemistry, potentially leading to a new class of gold coated nanoparticles. Monodisperse silica nanoparticles were synthesised by the well known Stöber protocol in conjunction with sonication. The nanoparticle size was regulated solely by varying the amount of ammonia solution added. The presence of surface hydroxyl groups was investigated by liquid proton NMR. The resultant nanoparticle size was directly measured by the use of TEM. The synthesised silica nanoparticles were dispersed in acetonitrile (MeCN) and added to a bis acetonitrile gold(I) co-ordination complex [Au(MeCN)2]+ in MeCN. The silica hydroxyl groups were deprotonated in the presence of MeCN generating a formal negative charge on the siloxy groups. This allowed the [Au(MeCN)2]+ complex to undergo ligand exchange with the silica nanoparticles, which formed a surface co-ordination complex with reduction to gold(0), that proceeded by a surface inner sphere electron transfer mechanism. The residual [Au(MeCN)2]+ complex was allowed to react with water, disproportionating into gold(0) and gold(III) respectively, with gold(0) being added to the reduced gold already bound on the silica surface. The so-formed metallic gold seed surface was found to be suitable for the conventional reduction of gold(III) to gold(0) by ascorbic acid. This process generated a thin and uniform gold coating on the silica nanoparticles. This process was modified to include uniformly gold coated composite zinc oxide nanoparticles (Au@ZnO NPs) using surface co-ordination chemistry. AuCl dissolved in acetonitrile (MeCN) supplied chloride ions which were adsorbed onto ZnO NPs. The co-ordinated gold(I) was reduced on the ZnO surface to gold(0) by the inner sphere electron transfer mechanism. Addition of water disproportionated the remaining gold(I) to gold(0) and gold(III). Gold(0) bonded to gold(0) on the NP surface with gold(III) was reduced to gold(0) by ascorbic acid (ASC), which completed the gold coating process. This gold coating process of Au@ZnO NPs was modified to incorporate iodide instead of chloride. ZnO NPs were synthesised by the use of sodium oxide, zinc iodide and potassium iodide in refluxing basic ethanol with iodide controlling the presence of chemisorbed oxygen. These ZnO NPs were treated by the addition of gold(I) chloride dissolved in acetonitrile leaving chloride anions co-ordinated on the ZnO NP surface. This allowed acetonitrile ligands in the added [Au(MeCN)2]+ complex to surface exchange with adsorbed chloride from the dissolved AuCl on the ZnO NP surface. Gold(I) was then reduced by the surface inner sphere electron transfer mechanism. The presence of the reduced gold on the ZnO NPs allowed adsorption of iodide to generate a uniform deposition of gold onto the ZnO NP surface without the use of additional reducing agents or heat.
Resumo:
Nitrate reduction with nanoscale zero-valent iron (NZVI) was reported as a potential technology to remove nitrate from nitrate-contaminated water. In this paper, nitrate reduction with NZVI prepared by hydrogen reduction of natural goethite (NZVI-N, -N represents natural goethite) and hydrothermal goethite (NZVI-H, -H represents hydrothermal goethite) was conducted. Besides, the effects of reaction time, nitrate concentration, iron-to-nitrate ratio on nitrate removal rate over NZVI-H and NZVI-N were investigated. To prove their excellent nitrate reduction capacities, NZVI-N and NZVI-H were compared with ordinary zero-valent iron (OZVI-N) through the static experiments. Based on all above investigations, the mechanism of nitrate reduction with NZVI-N was proposed. The result showed that reaction time, nitrate concentration, iron-to-nitrate ratio played an important role in nitrate reduction by NZVI-N and NZVI-H. Compared with OZVI, NZVI-N and NZVI-H showed little relationship with pH. And NZVI-N for nitrate composition offers a higher stability than NZVI-H because of the existence of Al-substitution. Furthermore, NZVI-N, prepared by hydrogen reduction of goethite, has higher activity for nitrate reduction and the products contain hydrogen, nitrogen, NH 4 +, a little nitrite, but no NOx, meanwhile NZVI-N was oxidized to Fe 2+. It is a relatively easy and cost-effective method for nitrate removal, so NZVI-N reducing nitrate has a great potential application in nitrate removal of groundwater. © 2012 Elsevier B.V.
Resumo:
One of the fundamental econometric models in finance is predictive regression. The standard least squares method produces biased coefficient estimates when the regressor is persistent and its innovations are correlated with those of the dependent variable. This article proposes a general and convenient method based on the jackknife technique to tackle the estimation problem. The proposed method reduces the bias for both single- and multiple-regressor models and for both short- and long-horizon regressions. The effectiveness of the proposed method is demonstrated by simulations. An empirical application to equity premium prediction using the dividend yield and the short rate highlights the differences between the results by the standard approach and those by the bias-reduced estimator. The significant predictive variables under the ordinary least squares become insignificant after adjusting for the finite-sample bias. These discrepancies suggest that bias reduction in predictive regressions is important in practical applications.
Resumo:
A bifunctionalized TiO2 film containing a dye-sensitized zone and a catalysis zone is designed for visible-light photocatalytic reduction of CO2 to chemicals continuously. Charge separation can be accomplished with electron transferring to catalysis zone and positive charge transforming to anode. Highly efficient conversion of CO2 to formic acid, formaldehyde, and methanol is achieved through the transferring electrons on conduction bands (CB) of TiO2. Reduction of CO2 and O2 evolution take place in separated solutions on different catalysts. The separated solution carried out in this photo-reactor system can avoid CO2 reduction products being oxidized by anode. The yields of reduction products were enhanced remarkably by external electrical power. This study provides not only a new photocatalytic system but also a potential of renewable energy source via carbon dioxide.
Resumo:
The aim of this paper is to provide a comparison of various algorithms and parameters to build reduced semantic spaces. The effect of dimension reduction, the stability of the representation and the effect of word order are examined in the context of the five algorithms bearing on semantic vectors: Random projection (RP), singular value decom- position (SVD), non-negative matrix factorization (NMF), permutations and holographic reduced representations (HRR). The quality of semantic representation was tested by means of synonym finding task using the TOEFL test on the TASA corpus. Dimension reduction was found to improve the quality of semantic representation but it is hard to find the optimal parameter settings. Even though dimension reduction by RP was found to be more generally applicable than SVD, the semantic vectors produced by RP are somewhat unstable. The effect of encoding word order into the semantic vector representation via HRR did not lead to any increase in scores over vectors constructed from word co-occurrence in context information. In this regard, very small context windows resulted in better semantic vectors for the TOEFL test.
Resumo:
The structure of Cu-ZSM-5 catalysts that show activity for direct NO decomposition and selective catalytic reduction of NOx by hydrocarbons has been investigated by a multitude of modern surface analysis and spectroscopy techniques including X-ray photoelectron spectroscopy, thermogravimetric analysis, and in situ Fourier transform infrared spectroscopy. A series of four catalysts were prepared by exchange of Na-ZSM-5 with dilute copper acetate, and the copper loading was controlled by variation of the solution pH. Underexchanged catalysts contained isolated Cu2+OH-(H2O) species and as the copper loading was increased Cu2+ ions incorporated into the zeolite lattice appeared. The sites at which the latter two copper species were located were fundamentally different. The Cu2+OH-(H2O) moieties were bound to two lattice oxygen ions and associated with one aluminum framework species. In contrast, the Cu2+ ions were probably bound to four lattice oxygen ions and associated with two framework aluminum ions. Once the Cu-ZSM-5 samples attained high levels of exchange, the development of [Cu(μ-OH)2Cu]n2+OH-(H2O) species along with a small concentration of Cu(OH)2 was observed. On activation in helium to 500°C the Cu2+OH-(H2O) species transformed into Cu2+O- and Cu+ moieties, whereas the Cu2+ ions were apparently unaffected by this treatment (apart from the loss of ligated water molecules). Calcination of the precursors resulted in the formation of Cu2+O2- and a one-dimensional CuO species. Temperature-programmed desorption studies revealed that oxygen was removed from the latter two species at 407 and 575°C, respectively. © 1999 Academic Press.
Resumo:
The effects of electron irradiation on NiO-containing solid solution systems are described. Partially hydrated NiO solid solutions, e. g. , NiO-MgO, undergo surface reduction to Ni metal after examination by TEM. This surface layer results in the formation of Moire interference patterns.
Resumo:
Based on theoretical prediction, a g-C3N4@carbon metal-free oxygen reduction reaction (ORR) electrocatalyst was designed and synthesized by uniform incorporation of g-C3N4 into a mesoporous carbon to enhance the electron transfer efficiency of g-C3N4. The resulting g-C3N4@carbon composite exhibited competitive catalytic activity (11.3 mA cm–2 kinetic-limiting current density at −0.6 V) and superior methanol tolerance compared to a commercial Pt/C catalyst. Furthermore, it demonstrated significantly higher catalytic efficiency (nearly 100% of four-electron ORR process selectivity) than a Pt/C catalyst. The proposed synthesis route is facile and low-cost, providing a feasible method for the development of highly efficient electrocatalysts.
Resumo:
Granulysin is a cytolytic granule protein released by natural killer cells and activated cytotoxic T lymphocytes. The influence of exercise training on circulating granulysin concentration is unknown, as is the relationship between granulysin concentration, natural killer cell number and natural killer cell cytotoxicity. We examined changes in plasma granulysin concentration, natural killer cell number and cytotoxicity following acute exercise and different training loads. Fifteen highly trained male cyclists completed a baseline 40-km cycle time trial (TT401) followed by five weeks of normal training and a repeat time trial (TT402). The cyclists then completed four days of high intensity training followed by another time trial (TT403) on day five. Following one final week of normal training cyclists completed another time trial (TT404). Fasting venous blood was collected before and after each time trial to determine granulysin concentration, natural killer cell number and natural killer cell cytotoxicity. Granulysin concentration increased significantly after each time trial (P<0.001). Pre-exercise granulysin concentration for TT403 was significantly lower than pre-exercise concentration for TT401 (-20.3 +/- 7.5%, P<0.026), TT402 (-16.7 +/- 4.3%, P<0.003) and 7T404 (-21 +/- 4.2%, P<0.001). Circulating natural killer cell numbers also increased significantly post-exercise for each time trial (P<0.001), however there was no significant difference across TT40 (P>0.05). Exercise did not significantly alter natural killer cell cytotoxicity on a per cell basis, and there were no significant differences between the four time trials. In conclusion, plasma granulysin concentration increases following moderate duration, strenuous exercise and is decreased in response to a short-term period of intensified training.
Resumo:
Bunker fuels used in the aviation and maritime sectors are responsible for nearly 10% of global greenhouse gas emissions.1 According to a scientific survey: ‘[s]hipping is estimated to have emitted 1,046 million tonnes of CO2 in 2007, which corresponds to 3.3% of the global emissions during 2007. International shipping is estimated to have emitted 870 million tonnes, or about 2.7% of the global emissions of CO2 in 2007’. The study also predicted that ‘by 2050, in the absence of policies, ship emissions may grow by 150% to 250% (compared to the emissions in 2007) as a result of the growth in shipping.’
Resumo:
Article 2(2) of the Kyoto Protocol imposes an obligation only on certain developed countries, working through the International Maritime Organisation (IMO), to pursue the reduction of greenhouse gas (GHG) emissions from marine bunker fuels. The IMO recently took the initiative to adopt a new legal instrument for the reduction of shipgenerated greenhouse gas emissions. Some developing countries have suggested that the proposed IMO initiative should strictly adhere to Article 2(2) of the Kyoto Protocol and the principle of Common but Differentiated Responsibility (CBDR). Against this backdrop, this article intends to review the extent to which it is possible to propose an international legal instrument for the reduction of GHG emissions from marine bunker fuels which is applicable only to ships from developed countries considering the complex characteristics of the international shipping industry. This article also examines how far this approach is justifiable even within the framework of the CBDR principle.