980 resultados para Neuro-astroglial interaction model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Hyperhomocysteinemia (hHcy) has been associated with an increased risk of cardiovascular disease and stroke. Essential hypertension (EH), a polygenic condition, has also been associated with increased risk of cardiovascular related disorders. To investigate the role of the homocysteine (Hcy) metabolism pathway in hypertension we conducted a case-control association study of Hcy pathway gene variants in a cohort of Caucasian hypertensives and age- and sex-matched normotensives. We genotyped two polymorphisms in the methylenetetrahydrofolate reductase gene (MTHFR C677T and MTHFR A1298C), one polymorphism in the methionine synthase reductase gene (MTRR A66G), and one polymorphism in the methylenetetrahydrofolate dehydrogenase 1 gene (MTHFD1 G1958A) and assessed their association with hypertension using chi-square analysis. We also performed a multifactor dimensionality reduction (MDR) analysis to investigate any potential epistatic interactions among the four polymorphisms and EH. None of the four polymorphisms was significantly associated with EH and although we found a moderate synergistic interaction between MTHFR A1298C and MTRR A66G, the association of the interaction model with EH was not statistically significant (

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In spite of the extensive usage of continuous welded rails, a number of rail joints still exist in the track. Although a number of them exist as part of turnouts in the yards where the speed is not of concern, the Insultated Rail Joints (IRJs) that exist in ballasted tracks remain a source of significant impact loading. A portion of the dynamic load generated at the rail joints due to wheel passage is transmitted to the support system which leads to permanent settlements of the ballast layer with subsequent vertical misalignment of the sleepers around the rail joints. The vertical misalignment of the adjacent sleepers forms a source of high frequency dynamic load raisers causing significant maintenance work including localised grinding of railhead around the joint, re-alignment of the sleepers and/or ballast tamping or track component renewals/repairs. These localised maintenance activities often require manual inspections and disruptions to the train traffic loading to significant costs to the rail industry. Whilst a number of studies have modelled the effect of joints as dips, none have specifically attended to the effect of vertical misalignment of the sleepers on the dynamic response of rail joints. This paper presents a coupled finite element track model and rigid body track-vehicle interaction model through which the effects of vertical of sleepers on the increase in dynamic loads around the IRJ are studied. The finite element track model is employed to determine the generated dip from elastic deformations as well as the vertical displacement of sleepers around the joint. These data (dip and vertical misalignments) are then imported into the rigid body vehicle-track interaction model to calculate the dynamic loads.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Biventricular support with dual rotary ventricular assist devices (VADs) has been implemented clinically with restriction of the right VAD (RVAD) outflow cannula to artificially increase afterload and, therefore, operate within recommended design speed ranges. However, the low preload and high afterload sensitivity of these devices increase the susceptibility of suction events. Active control systems are prone to sensor drift or inaccurate inferred (sensor-less) data, therefore an alternative solution may be of benefit. This study presents the in vitro evaluation of a compliant outflow cannula designed to passively decrease the afterload sensitivity of rotary RVADs and minimize left-sided suction events. A one-way fluid-structure interaction model was initially used to produce a design with suitable flow dynamics and radial deformation. The resultant geometry was cast with different initial cross-sectional restrictions and concentrations of a softening diluent before evaluation in a mock circulation loop. Pulmonary vascular resistance (PVR) was increased from 50 dyne s/cm5 until left-sided suction events occurred with each compliant cannula and a rigid, 4.5 mm diameter outflow cannula for comparison. Early suction events (PVR ∼ 300 dyne s/cm5) were observed with the rigid outflow cannula. Addition of the compliant section with an initial 3 mm diameter restriction and 10% diluent expanded the outflow restriction as PVR increased, thus increasing RVAD flow rate and preventing left-sided suction events at PVR levels beyond 1000 dyne s/cm5. Therefore, the compliant, restricted outflow cannula provided a passive control system to assist in the prevention of suction events with rotary biventricular support while maintaining pump speeds within normal ranges of operation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: To compare the differences in the hemodynamic parameters of abdominal aortic aneurysm (AAA) between fluid-structure interaction model (FSIM) and fluid-only model (FM), so as to discuss their application in the research of AAA. Methods: An idealized AAA model was created based on patient-specific AAA data. In FM, the flow, pressure and wall shear stress (WSS) were computed using finite volume method. In FSIM, an Arbitrary Lagrangian-Eulerian algorithm was used to solve the flow in a continuously deforming geometry. The hemodynamic parameters of both models were obtained for discussion. Results: Under the same inlet velocity, there were only two symmetrical vortexes in the AAA dilation area for FSIM. In contrast, four recirculation areas existed in FM; two were main vortexes and the other two were secondary flow, which were located between the main recirculation area and the arterial wall. Six local pressure concentrations occurred in the distal end of AAA and the recirculation area for FM. However, there were only two local pressure concentrations in FSIM. The vortex center of the recirculation area in FSIM was much more close to the distal end of AAA and the area was much larger because of AAA expansion. Four extreme values of WSS existed at the proximal of AAA, the point of boundary layer separation, the point of flow reattachment and the distal end of AAA, respectively, in both FM and FSIM. The maximum wall stress and the largest wall deformation were both located at the proximal and distal end of AAA. Conclusions: The number and center of the recirculation area for both models are different, while the change of vortex is closely associated with the AAA growth. The largest WSS of FSIM is 36% smaller than that of FM. Both the maximum wall stress and largest wall displacement shall increase with the outlet pressure increasing. FSIM needs to be considered for studying the relationship between AAA growth and shear stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Through this study I aim to portray connections between home and school through the patterns of thought and action shared in everyday life in a certain community. My observations are primarily based upon interviews, writings and artwork by people from home (N=32) and school (N=13) contexts. Through the stories told, I depict the characters and characteristic features of the home-school interaction by generations. According to the material, in the school days of the grandparents the focus was on discipline and order. For the parents, the focus had shifted towards knowledge, while for the pupils today, the focus lies on evaluation, through which the upbringing of the child is steered towards favourable outcomes. Teachers and those people at home hold partially different understandings of home-school interaction, both of its manifested forms and potentials. The forms of contact in use today are largely seen as one-sided. Yearning for openness and regularity is shared by both sides, yet understood differently. Common causes for failure are said to lie in plain human difficulties in communication and social interaction, but deeply rooted traditions regarding forms of contact also cast a shadow on the route to successful co-operation. This study started around the idea, that home-school interaction should be steered towards the ex-change of constructive ideas between both the home and school environments. Combining the dif-ferent views gives to something to build upon. To test this idea, I drafted a practice period, which was implemented in a small pre-school environment in the fall of 1997. My focus of interest in this project was on the handling of ordinary life information in the schools. So I combined individual views, patterns of knowledge and understanding of the world into the process of teaching. Works of art and writings by the informants worked as tools for information processing and as practical forms of building home-school interaction. Experiences from the pre-school environ-ment were later on echoed in constructing home-school interaction in five other schools. In both these projects, the teaching in the school was based on stories, thoughts and performances put to-gether by the parents, grandparents and children at home. During these processes, the material used in this study, consisting of artwork, writings and interviews (N=501), was collected. The data shows that information originating from the home environments was both a motivating and interesting addition to the teaching. There even was a sense of pride when assessing the seeds of knowledge from one’s own roots. In most cases and subjects, the homegrown information content was seamlessly connected to the functions of school and the curriculum. This project initiated thought processes between pupils and teachers, adults, children and parents, teachers and parents, and also between generations. It appeared that many of the subjects covered had not been raised before between the various participant groups. I have a special interest here in visual expression and its various contextual meanings. There art material portrays how content matter and characteristic features of the adult and parent contexts reflect in the works of the children. Another clearly noticeable factor in the art material is the impact of time-related traditions and functions on the means of visual expression. Comparing the visual material to the written material reveals variances of meaning and possibilities between these forms of expression. The visual material appears to be related especially to portraying objects, action and usage. Processing through that making of images was noted to bring back memories of concrete structures, details and also emotions. This process offered the child an intensive social connection with the adults. In some cases, with children and adults alike, this project brought forth an ongoing relation to visual expression. During this study I end up changing the concept to ‘home-school collaboration’. This widely used concept guides and outlines the interaction between schools and homes. In order to broaden the field of possibilities, I choose to use the concept ‘school-home interconnection’. This concept forms better grounds for forming varying impressions and practices when building interactive contexts. This concept places the responsibility of bridging the connection-gap in the schools. Through the experiences and innovations of thought gained from these projects, I form a model of pedagogy that embraces the idea of school-home interconnection and builds on the various impres-sions and expressions contained in it. In this model, school makes use of the experiences, thoughts and conceptions from the home environment. Various forms of expression are used to portray and process this information. This joint evaluation and observation evolves thought patterns both in school and at home. Keywords: percieving, visuality, visual culture, art and text, visual expression, art education, growth in interaction, home-school collaboration, school-home interconnection, school-home interaction model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis concerns the dynamics of nanoparticle impacts on solid surfaces. These impacts occur, for instance, in space, where micro- and nanometeoroids hit surfaces of planets, moons, and spacecraft. On Earth, materials are bombarded with nanoparticles in cluster ion beam devices, in order to clean or smooth their surfaces, or to analyse their elemental composition. In both cases, the result depends on the combined effects of countless single impacts. However, the dynamics of single impacts must be understood before the overall effects of nanoparticle radiation can be modelled. In addition to applications, nanoparticle impacts are also important to basic research in the nanoscience field, because the impacts provide an excellent case to test the applicability of atomic-level interaction models to very dynamic conditions. In this thesis, the stopping of nanoparticles in matter is explored using classical molecular dynamics computer simulations. The materials investigated are gold, silicon, and silica. Impacts on silicon through a native oxide layer and formation of complex craters are also simulated. Nanoparticles up to a diameter of 20 nm (315000 atoms) were used as projectiles. The molecular dynamics method and interatomic potentials for silicon and gold are examined in this thesis. It is shown that the displacement cascade expansionmechanism and crater crown formation are very sensitive to the choice of atomic interaction model. However, the best of the current interatomic models can be utilized in nanoparticle impact simulation, if caution is exercised. The stopping of monatomic ions in matter is understood very well nowadays. However, interactions become very complex when several atoms impact on a surface simultaneously and within a short distance, as happens in a nanoparticle impact. A high energy density is deposited in a relatively small volume, which induces ejection of material and formation of a crater. Very high yields of excavated material are observed experimentally. In addition, the yields scale nonlinearly with the cluster size and impact energy at small cluster sizes, whereas in macroscopic hypervelocity impacts, the scaling 2 is linear. The aim of this thesis is to explore the atomistic mechanisms behind the nonlinear scaling at small cluster sizes. It is shown here that the nonlinear scaling of ejected material yield disappears at large impactor sizes because the stopping mechanism of nanoparticles gradually changes to the same mechanism as in macroscopic hypervelocity impacts. The high yields at small impactor size are due to the early escape of energetic atoms from the hot region. In addition, the sputtering yield is shown to depend very much on the spatial initial energy and momentum distributions that the nanoparticle induces in the material in the first phase of the impact. At the later phases, the ejection of material occurs by several mechanisms. The most important mechanism at high energies or at large cluster sizes is atomic cluster ejection from the transient liquid crown that surrounds the crater. The cluster impact dynamics detected in the simulations are in agreement with several recent experimental results. In addition, it is shown that relatively weak impacts can induce modifications on the surface of an amorphous target over a larger area than was previously expected. This is a probable explanation for the formation of the complex crater shapes observed on these surfaces with atomic force microscopy. Clusters that consist of hundreds of thousands of atoms induce long-range modifications in crystalline gold.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report x-ray photoelectron spectroscopic investigation of RuSr2Eu1.5Ce0.5Cu2O10 with ferromagnetic T-C similar to 100 K and a superconducting transition temperature of similar to 30 K compared with RuSr2EuCeCu2O10, which is a ferromagnetic (T-C similar to 150 K) insulator. Our results show that the rare earths, Eu and Ce, are in 3+ and 4+ states, respectively. Comparing the Ru core level spectra from these compounds to those from two Ru reference oxides, we also show that Ru in these ruthenocuprates is always in 5+ state, suggesting that the doped holes in the superconducting compound arising from the substitution of Ce4+ by Eu3+ are primarily in the Cu-O plane, in close analogy to all other doped high-T-C cuprates. Analysis of Cu 2p spectra in terms of a configuration interaction model provides a quantitative description of the gross electronic structures of these ruthenocuprates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Productive coexistence and coexistence gain of populations were studied using nine years' data from field experiments of Taxodium ascendens-intercrop systems in Lixiahe, Jiangsu Province, China. A theoretical framework for productive coexistence in agroforestry was developed. Interaction patterns between trees and intercrops were presented within this framework. A model framework was developed to describe the coexistence gain and interaction of populations in T. ascendens-intercrop systems. Facilitation and resource sharing were identified as main contribution to the advantage of species combination in agroforestry. The model of population interaction developed in the present study was accepted for describing the interaction of populations in T. ascendens-intercrop systems, because it explained a high proportion of the variance of experimental data and fitted well the observations in most intercropping types. The model developed in the present study provides flexibility for describing different patterns of intra- and inter-specific interactions. Model coefficients were applied to the determination of the ecological compatibility of species. Managed T. ascendens-intercrop systems were advantageous as compared to a monoculture of trees or arable crops. In T. ascendens stands up to the age of three, arable crops contributed about 50-80 % of the total biomass yield of agroforestry. The diameter or height growth of T. ascendens was not significantly influenced by intercrops, indicating that intercropping under trees produced extra yields but did not depress the tree growth. When the trees were young (during the first three years), T. ascendens did not depress the crop yields, and a land equivalent ratio greater than unity was obtained together with a high yield of both components. The diameter and height of the trees were similar in four spacing configurations with an equal number of trees per hectare up to the age of eight, but wider between-rows open range were beneficial for the intercrops. The relationship between open-ranges and species coexistence was also analysed and the distribution of soil nutrients studied.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The temperature and magnetic field dependence of conductivity has been used to probe the inter-tube transport in multiwall carbon nanotubes (MWNTs). The scanning electron microscopy images show highly aligned and random distribution of MWNTs. The conductivity in aligned carbon nanotube (ACNT) and random carbon nanotube (RCNT) samples at low temperature follows T-1/2 (at T < 8 K) and T-3/4 (at T > 8 K) dependence in accordance with the weak localization and electron-electron (e-e) interaction model. The values of diffusion coefficient in ACNT and RCNT are 0.25 x 10(-2) and 0.71 x 10(-2) cm(2) s(-1), respectively, indicating that larger number of inter-tube junctions in later enhances the bulk transport. The positive magnetoconductance (MC) data in both samples show that the weak localization contribution is dominant. However, the saturation of MC at higher fields and lower temperatures indicate that e-e interaction is quite significant in RCNT. The T-3/4 and T-1/2 dependence of inelastic scattering length (l(in)) in ACNT and RCNT samples show that the inelastic e-e scattering is more important in aligned tubes. (C) 2011 American Institute of Physics. doi:10.1063/1.3552911]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Electrical conductivity and thermopower are studied in the conducting polymer polypyrrole doped with varying levels of the dopant hexafluoro phosphate (PF6). A single sample is prepared by galvanostatic electrochemical polymerization at -40 degreesC. From this sample, six samples having different dopant levels and correspondingly different conductivity are prepared by dedoping. Low temperature d.c. electrical conductivity measurement shows the metal-insulator transition from fully doped sample to dedoped samples. On the metallic side the data are fitted to the localization-interaction model. In critical regime, it follows the power law. On the insulating side, it is variable range hopping. Thermopower measurements are done in the temperature range 300 K to 20 K. Thermopower is linear for samples on the metallic side and becomes more and more non-linear on the insulating side. It is described using a combination of the linear metallic term and the non-linear hopping term. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The emission intensity of fluorophore molecule may change in presence of strong plasmon field induced by nanoparticles. The enhancement intensity is optimized through selective clustering or functionalization of nanoparticles in closed vicinity of fluorophore. Our study is aimed at understanding the enhancement mechanism of fluorescence intensity in presence of gold nanoparticles to utilize it in molecular sensing and in situ imaging in the microfluidic lab-on-chip device. Related phenomena are studied in situ in a microfluidic channel via fluorescence imaging. Detailed analysis is carried out to understand the possible mechanism of enhancement of fluorescence due to nanoparticles. In the present experimental study we show that SYTO9 fluorescence intensity increased in presence of Au nanoparticles of similar to 20 nm diameter. The fluorescence intensity is 20 time more compared to that in absence of Au nanoparticles. The enhancement of fluorescence intensity is attributed to the plasmonic resonance of Au nanoparticle at around the fluorescence emission wavelength. Underlying fundamental mechanism via dipole interaction model is explored for quantitative correlation of plasmonic enhancement properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The existing Det Norske Veritas DNV Recommended Practice RP E305 for pipeline on-bottom stability is mainly based on the pipe–soil interaction model reported by Wagner et al. in 1987, and the wake model reported by Lambrakos et al. in 1987, to calculate the soil resistance and the hydrodynamic forces upon pipeline, respectively. Unlike the methods in the DNV Practice, in this paper, an improved analysis method is proposed for the on-bottom stability of a submarine pipeline, which is based on the relationships between Um/ gD 0.5 and Ws / D2 for various restraint conditions obtained by the hydrodynamic loading experiments, taking into account the coupling effects between wave, pipeline, and sandy seabed. The analysis procedure is illustrated with a detailed flow chart. A comparison is made between the submerged weights of pipeline predicted with the DNV Practice and those with the new method. The proposed analysis method may provide a helpful tool for the engineering practice of pipeline on-bottom stability design.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent works in the area of adaptive education systems point out the importance of aumenting the student model to improve the personalization and adaptation to the learner by means of several aspects such as emotions, user locations or interactions. Until now the study of interactions has been mainly focused on the student-learning system flow, despite the fact that the most successful and used way of teaching are the traditional face-to-face interactions. In this project, we explore the use of interactions among teachers and students, as they occur in traditional education, to enrich the current student models, with the aim of providing them with useful information about new characteristics for improving the learning process. At a first step, in this paper we present the formal process carried out to obtain information about teachers’ expertise and necessities regarding the direct interactions with students.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Natural waters may be chemically studied as mixed electrolyte solutions. Some important equilibrium properties of natural waters are intimately related to the activity-concentration ratios (i.e., activity coefficients) of the ions in solution. An Ion Interaction Model, which is based on Pitzer's (1973) thermodynamic model, is proposed in this dissertation. The proposed model is capable of describing the activity coefficient of ions in mixed electrolyte solutions. The effects of temperature on the equilibrium conditions of natural waters and on the activity coefficients of the ions in solution, may be predicted by means of the Ion Interaction Model presented in this work.

The bicarbonate ion, HCO3-, is commonly found in natural waters. This anion plays an important role in the chemical and thermodynamic properties of water bodies. Such properties are usually directly related to the activity coefficient of HCO3- in solution. The Ion Interaction Model, as proposed in this dissertation, is used to describe indirectly measured activity coefficients of HCO3- in mixed electrolyte solutions.

Experimental pH measurements of MCl-MHCO3 and MCl-H2CO3 solutions at 25°C (where M = K+, Na+, NH4+, Ca2+ or Mg2+) are used in this dissertation to evaluate indirectly the MHCO3 virial coefficients. Such coefficients permit the prediction of the activity coefficient of HCO3- in mixed electrolyte solutions. The Ion Interaction Model is found to be an accurate method for predicting the activity coefficient of HCO3- within the experimental ionic strengths (0.2 to 3.0 m). The virial coefficients of KHCO3 and NaHCO3 and their respective temperature variations are obtained from similar experimental measurements at 10° and 40°C. The temperature effects on the NH4HCO3, Ca(HCO3)2, and Mg(HCO3)2 virial coefficients are estimated based on these results and the temperature variations of the virial coefficients of 40 other electrolytes.

Finally, the Ion Interaction Model is utilized to solve various problems of water chemistry where bicarbonate is present in solution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of intermolecular coupling in molecular energy levels (electronic and vibrational) has been investigated in neat and isotopic mixed crystals of benzene. In the isotopic mixed crystals of C6H6, C6H5D, m-C6H4D2, p-C6H4D2, sym-C6H3D3, C6D5H, and C6D6 in either a C6H6 or C6D6 host, the following phenomena have been observed and interpreted in terms of a refined Frenkel exciton theory: a) Site shifts; b) site group splittings of the degenerate ground state vibrations of C6H6, C6D6, and sym-C6H3D3; c) the orientational effect for the isotopes without a trigonal axis in both the 1B2u electronic state and the ground state vibrations; d) intrasite Fermi resonance between molecular fundamentals due to the reduced symmetry of the crystal site; and e) intermolecular or intersite Fermi resonance between nearly degenerate states of the host and guest molecules. In the neat crystal experiments on the ground state vibrations it was possible to observe many of these phenomena in conjunction with and in addition to the exciton structure.

To theoretically interpret these diverse experimental data, the concepts of interchange symmetry, the ideal mixed crystal, and site wave functions have been developed and are presented in detail. In the interpretation of the exciton data the relative signs of the intermolecular coupling constants have been emphasized, and in the limit of the ideal mixed crystal a technique is discussed for locating the exciton band center or unobserved exciton components. A differentiation between static and dynamic interactions is made in the Frenkel limit which enables the concepts of site effects and exciton coupling to be sharpened. It is thus possible to treat the crystal induced effects in such a fashion as to make their similarities and differences quite apparent.

A calculation of the ground state vibrational phenomena (site shifts and splittings, orientational effects, and exciton structure) and of the crystal lattice modes has been carried out for these systems. This calculation serves as a test of the approximations of first order Frenkel theory and the atom-atom, pair wise interaction model for the intermolecular potentials. The general form of the potential employed was V(r) = Be-Cr - A/r6 ; the force constants were obtained from the potential by assuming the atoms were undergoing simple harmonic motion.

In part II the location and identification of the benzene first and second triplet states (3B1u and 3E1u) is given.