988 resultados para Nesting growth rate


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of dietary supplementation of commercial human probiotic, Lactobacil and antibiotic, oxytetracycline on the growth, survival, disease resistance and content of intestinal microflora in two ornamental fishes, viz., goldfish, Carassius auratus and swordtail, Xiphophorus helleri were studied. The total wet weight gain, food conversion ratio and specific growth rate of C. auratus did not vary significantly (p>0.05) among treatments. While in X. helleri, significant differences existed in the total wet weight gain, survival, food conversion ratio and specific growth rate among treatment groups (p<0.05). The counts of antibiotic resistant bacteria in fish gut increased with days of culture in all the treatments and the increase was more in antibiotic fed fishes. A reduction in the development of antibiotic resistance among the bacterial flora of fish gut was noticed in probiotic fed groups of C auratus and X. helleri. The results of the present study revealed that the effects of human probiotic on the growth, survival and disease resistance of ornamental fishes are variable and difficult to reproduce the similar effect on different species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In conventional planar growth of bulk III-V materials, a slow growth rate favors high crystallographic quality, optical quality, and purity of the resulting material. Surprisingly, we observe exactly the opposite effect for Au-assisted GaAs nanowire growth. By employing a rapid growth rate, the resulting nanowires are markedly less tapered, are free of planar crystallographic defects, and have very high purity with minimal intrinsic dopant incorporation. Importantly, carrier lifetimes are not adversely affected. These results reveal intriguing behavior in the growth of nanoscale materials, and represent a significant advance toward the rational growth of nanowires for device applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Submitted by 阎军 (yanj@red.semi.ac.cn) on 2010-04-13T16:03:37Z No. of bitstreams: 1 Growing 20 cm Long DWNTsTWNTs at a Rapid Growth Rate of 80-90 mu ms .pdf: 3229914 bytes, checksum: 0259795afb443dc6901c11df5ecd325a (MD5)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

InAs self-organized nanostructures in In0.52Al0.48As matrix have been grown on InP (001) substrates by molecular beam epitaxy. The morphologies of the nanostructures are found to be strongly dependent on the growth rate of the InAs layer. By increasing the growth rate from 0.005 to 0.35 ML/s, the morphology of the nanostructure changes from wire to elongated dot and then changes back to wire again. Polarized photoluminescence of the InAs quantum wires and quantum dots are performed at 77 K, which are characterized by strong optical anisotropies. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Al composition of metalorganic chemical vapor deposition (MOCVD)-grown AlGaN alloy layers is found to be greatly influenced by the parasitic reaction between ammonia (NH3) and trimethylaluminum (TMAI). The growth process of AlN is carefully investigated by monitoring the in situ optical reflection. The abnormal dependencies of growth rate on growth temperature, reactor pressure, and flux of NH3 are observed and can be well explained by the effect of parasitic reaction. The increase of growth rate with increasing flux of TMAI is found to depend on the growth temperature and reactor pressure due to the presence of parasitic effect. A relatively low growth temperature and a reduced reactor pressure are suggested for the effective decrease of parasitic reaction during the MOCVD growth of AlN and probably lead to a more effective incorporation of Al into the AlGaN layers. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As reported by other authors, we have also observed that the Si growth rate decreases with increasing phosphine (PH3) flow rate in gas source-Si molecular beam epitaxy using phosphorous (P) as a n-type dopant. Why small quantity PH3 can affect Si growth rate? Up to now, the quantitative characterization of PH3 flow influence on Si growth rate is little known. In this letter, the PH, influence will be analyzed in detail and a model considering strong P surface segregation and its absorption of hydrogen will be proposed to characterize the effect. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth rate of GaN buffer layers on sapphire grown by metalorganic vapor-phase epitaxy (MOVPE) in an atmospheric pressure, two-channel reactor was studied. The growth rate, as measured using laser reflectance, was found to be dependent on growth temperature, molar flow rate of the sources tin this case, trimethylgallium and ammonia) and the input configuration of sources into the reactor. A model of the GaN buffer layer growth process by MOVPE is proposed to interpret the experimental evidence. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-quality GaN epilayers have been grown by gas source molecular beam epitaxy using ammonia as the nitrogen source. During the growth, the growth rate is up to 1.2 mu m/h and can be varied from 0.3 to 1.2 mu m. The unintentional n-type doping as low as 7x10(17) cm(-3) was obtained at room temperature. Low-temperature photoluminescence spectrum was dominated by near-edge emission without deep-level related luminescence, indicative of high-quality epilayers. (C) 1998 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

High homoepitaxial growth of 4H-SiC has been performed in a home-made horizontal hot wall CVD reactor on n-type 4H-SiC 8 degrees off-oriented substrates in the size of 10 mm x 10 mm, using trichlorosilane (TCS) as silicon precursor source together with ethylene as carbon precursor source. Cross-section Scanning Electron Microscopy (SEM), Raman scattering spectroscopy and Atomic Force Microscopy (AFM) were used to determine the growth rate, structural property and surface morphology, respectively. The growth rate reached to 23 mu m/h and the optimal epilayer was obtained at 1600 degrees C with TCS flow rate of 12 seem in C/Si of 0.42, which has a good surface morphology with a low Rms of 0.64 nm in 10 mu mx10 mu m area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tank cultivation of marine macroalgae involves air-agitation of the algal biomass and intermittent light conditions, i.e. periodic, short light exposure of the thalli in the range of 10 s at the water surface followed by plunging to low light or darkness at the tank bottom and recirculation back to the surface in the range of 1-2 min. Open questions relate to effects of surface irradiance on growth rate and yield in such tumble cultures and the possibility of chronic photoinhibition in full sunlight. A specially constructed shallow-depth tank combined with a dark tank allowed fast circulation times of approximately 5 s, at a density of 4.2 kg fresh weight (FW) m(-2) s(-1). Growth rate and yield of the red alga Palmaria palmata increased over a wide range of irradiances, with no signs of chronic photoinhibition, up to a growth-saturating irradiance of approximately 1600 mumol m(-2) s(-1) in yellowish light supplied by a sodium high pressure lamp at 16 h light per day. Maximum growth rate ranged at 12% FW d(-1), and maximum yield at 609 g FW m(-2) d(-1). This shows that high growth rates of individual thalli may be reached in a dense tumble culture, if high surface irradiances and short circulation times are supplied. Another aspect of intermittent light relates to possible changes of basic growth kinetics, as compared to continuous light. For this purpose on-line measurements of growth rate were performed with a daily light reduction by 50% in light-dark cycles of 1, 2 or 3 min duration during the daily light period. Growth rates at 10degreesC and 50 mumol photon m(-2) s- 1 dropped in all three intermittent light regimes during both the main light and dark periods and reached with all three periodicities approximately 50% of the control, with no apparent changes in basic growth kinetics, as compared to continuous light.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dilution experiments were performed to examine the growth rate and grazing mortality rate of size-fractionated phytoplankton at three typical stations, inside and outside the bay, in the spring and summer of 2003 in the Jiaozhou Bay, China. in spring, the phytoplankton community structure was similar among the three stations, and was mainly composed of nanophytoplankton, such as, Skeletonema costatum and Cylindrotheca closterium. The structure became significantly different for the three stations in summer, when the dominant species at Stas A, B and C were Chaetoceros curvisetus, Pseudo-nitzschia delicatissima, C. affinis, C. debilis, Coscinodiscus oculus-iridis and Paralia sulcata respectively. Tintinnopsis beroidea and T. tsingtaoensis were the dominant species in spring, whereas the microzooplankton was apparently dominated by Strombidium sp. in summer. Pico- and nanophytoplankton had a relatively greater growth rate than microzooplankton both in spring and summer. The growth rate and grazing mortality rate were 0.18 similar to 0.44 and 0.12 similar to 1.47 d(-1) for the total phytoplankton and 0.20 similar to 0.55 and 0.21 similar to 0.37 d-1 for nanophytoplankton in spring respectively. In summer, the growth rate and grazing mortality rate were 0.38 similar to 0.71 and 0.27 similar to 0.60 d-1 for the total phytoplankton and 0.11 similar to 1.18 and 0.41 similar to 0.72 d(-1) for nano- and microphytoplankton respectively. The carbon flux consumed by microzooplankton per day was 7.68 similar to 39.81 mg/m(3) in spring and 12.03 similar to 138.22 mg/m(3) in summer respectively. Microzooplankton ingested 17.56%similar to 92.19% of the phytoplankton standing stocks and 31.77%similar to 467.88% of the potential primary productivity in spring; in contrast, they ingested 34.60%similar to 83.04% of the phytoplankton standing stocks and 71.28%similar to 98.80% of the potential primary productivity in summer. Pico- and nanophytoplankton appeared to have relatively greater rates of growth and grazing mortality than microphytoplankton during the experimental period. The grazing rate of microzooplankton in summer was a little bit greater than that in spring because of the relatively higher incubation temperature and different dominant microzooplankton species. Microzooplankton preferred ingesting nanophytoplankton to microphytoplankton in spring, while they preferred ingesting picophytoplankton to nanophytoplankton and microphytoplankton in summer. Compared with the results of dilution experiments performed in various waters worldwide, the results are in the middle range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to study the effects of different nitrogen source and concentration on the growth rate and fatty acid composition, a marine microalga Ellipsoidion sp. with a high content of eicosapentaenoic acid (EPA) was cultured in media with different nitrogen sources and concentrations. During the pre-logarithmic phase, the alga grew faster with ammonium as N source than with nitrate, but the reverse applied during the post-logarithmic phase. The alga grew poorly in N-free medium or medium with urea as the sole N source. In the same growth phase, ammonium medium resulted in higher yield of total lipid, but the EPA yield did not differ significantly different from that using nitrate medium. The maximum growth rate occurred in medium containing 1.28 mmol L-1 sodium nitrate, while maximum EPA and total lipid contents were reached at 1.92 mmol L-1, when EPA accounted for 27.9% total fatty acids. The growth rate kept stable when NH4Cl ranged from 0.64 to 2.56 mmol L-1, and the maximum content of total lipid and EPA occurred in the medium with 2.56 mmol L-1 NH4Cl. The EPA content was higher in the pre- than post-logarithmic phase, though the total lipid content was lower. The highest EPA content expressed as percent total fatty acid was 27.9% in nitrate medium and and 39.0% in ammonium medium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cox, S.J., and Graner, F. (2004) Three-dimensional bubble clusters: shape, packing and growth-rate. Physical review. E, Statistical, nonlinear, and soft matter physics . 69:031409.