913 resultados para Nearest Neighbor


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Geospatial Technologies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As Redes Sem Fios Enterradas (Wireless Underground Networks - WUN) são formadas por nós que comunicam entre si através de ligações sem fios e têm como meio de propagação o solo. Os sistemas de localização mais utilizados atualmente têm desvantagens ao nível da precisão e o custo. Nesta tese é proposta uma solução de localização de precisão que recorre à utilização de redes sem fios enterradas e um algoritmo de posicionamento baseados em Wi-Fi. O objetivo é estimar a localização de objetos, utilizando dispositivos Wi-Fi de baixo custo. Os resultados experimentais obtidos demonstram que o erro de localização é inferior a 0,40 m, e que esta solução é viável para, por exemplo, localizar jogadores num campo de futebol ou localizar um objeto num campo agrícola.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação de Mestrado em Gestão do Território, Especialização em Detecção Remota e Sistemas de Informação Geográfica

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Dissertação para obtenção do Grau de Mestre em Engenharia Informática

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O desenvolvimento das tecnologias associadas à Detecção Remota e aos Sistemas de Informação Geográfica encontram-se cada vez mais na ordem do dia. E, graças a este desenvolvimento de métodos para acelerar a produção de informação geográfica, assiste-se a um crescente aumento da resolução geométrica, espectral e radiométrica das imagens, e simultaneamente, ao aparecimento de novas aplicações com o intuito de facilitar o processamento e a análise de imagens através da melhoria de algoritmos para extracção de informação. Resultado disso são as imagens de alta resolução, provenientes do satélite WorldView 2 e o mais recente software Envi 5.0, utilizados neste estudo. O presente trabalho tem como principal objectivo desenvolver um projecto de cartografia de uso do solo para a cidade de Maputo, com recurso ao tratamento e à exploração de uma imagem de alta resolução, comparando as potencialidades e limitações dos resultados extraídos através da classificação “pixel a pixel”, através do algoritmo Máxima Verossimilhança, face às potencialidades e eventuais limitações da classificação orientada por objecto, através dos algoritmos K Nearest Neighbor (KNN) e Support Vector Machine (SVM), na extracção do mesmo número e tipo de classes de ocupação/uso do solo. Na classificação “pixel a pixel”, com a aplicação do algoritmo classificação Máxima Verosimilhança, foram ensaiados dois tipos de amostra: uma primeira constituída por 20 classes de ocupação/uso do solo, e uma segunda por 18 classes. Após a fase de experimentação, os resultados obtidos com a primeira amostra ficaram aquém das espectativas, pois observavam-se muitos erros de classificação. A segunda amostra formulada com base nestes erros de classificação e com o objectivo de os minimizar, permitiu obter um resultado próximo das espectativas idealizadas inicialmente, onde as classes de interesse coincidem com a realidade geográfica da cidade de Maputo. Na classificação orientada por objecto foram 4 as etapas metodológicas utilizadas: a atribuição do valor 5 para a segmentação e 90 para a fusão de segmentos; a selecção de 15 exemplos sobre os segmentos gerados para cada classe de interesse; bandas diferentemente distribuídas para o cálculo dos atributos espectrais e de textura; os atributos de forma Elongation e Form Factor e a aplicação dos algoritmos KNN e SVM. Confrontando as imagens resultantes das duas abordagens aplicadas, verificou-se que a qualidade do mapa produzido pela classificação “pixel a pixel” apresenta um nível de detalhe superior aos mapas resultantes da classificação orientada por objecto. Esta diferença de nível de detalhe é justificada pela unidade mínima do processamento de cada classificador: enquanto que na primeira abordagem a unidade mínima é o pixel, traduzinho uma maior detalhe, a segunda abordagem utiliza um conjunto de pixels, objecto, como unidade mínima despoletando situações de generalização. De um modo geral, a extracção da forma dos elementos e a distribuição das classes de interesse correspondem à realidade geográfica em si e, os resultados são bons face ao que é frequente em processamento semiautomático.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Are return migrants more productive than non-migrants? If so, is it a causal effect or simply self-selection? Existing literature has not reached a consensus on the role of return migration for origin countries. To answer these research questions, an empirical analysis was performed based on household data collected in Cape Verde. One of the most common identification problems in the migration literature is the presence of migrant self-selection. In order to disentangle potential selection bias, we use instrumental variable estimation using variation provided by unemployment rates in migrant destination countries, which is compared with OLS and Nearest Neighbor Matching (NNM) methods. The results using the instrumental variable approach provide evidence of labour income gains due to return migration, while OLS underestimates the coefficient of interest. This bias points towards negative self-selection of return migrants on unobserved characteristics, although the different estimates cannot be distinguished statistically. Interestingly, migration duration and occupational changes after migration do not seem to influence post-migration income. There is weak evidence that return migrants from the United States have higher income gains caused by migration than the ones who returned from Portugal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider a two dimensional lattice coupled with nearest neighbor interaction potential of power type. The existence of infinite many periodic solutions is shown by using minimax methods.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We investigate whether dimensionality reduction using a latent generative model is beneficial for the task of weakly supervised scene classification. In detail, we are given a set of labeled images of scenes (for example, coast, forest, city, river, etc.), and our objective is to classify a new image into one of these categories. Our approach consists of first discovering latent ";topics"; using probabilistic Latent Semantic Analysis (pLSA), a generative model from the statistical text literature here applied to a bag of visual words representation for each image, and subsequently, training a multiway classifier on the topic distribution vector for each image. We compare this approach to that of representing each image by a bag of visual words vector directly and training a multiway classifier on these vectors. To this end, we introduce a novel vocabulary using dense color SIFT descriptors and then investigate the classification performance under changes in the size of the visual vocabulary, the number of latent topics learned, and the type of discriminative classifier used (k-nearest neighbor or SVM). We achieve superior classification performance to recent publications that have used a bag of visual word representation, in all cases, using the authors' own data sets and testing protocols. We also investigate the gain in adding spatial information. We show applications to image retrieval with relevance feedback and to scene classification in videos

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En aquest projecte es presenta l’aplicació per a dispositius mòbils Doppelganger. La seva funció és, a partir d’una fotografia, detectar la cara i mostrar la persona famosa de la nostra base de dades que més s’assembla a la persona en la fotografia. Per la implementació s’han utilitzat algoritmes de visió per computador i d’aprenentatge automàtic com per exemple el PCA i el K-Nearest Neighbor, tot utilitzant llibreries gratuïtes com són les OpenCV.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The research considers the problem of spatial data classification using machine learning algorithms: probabilistic neural networks (PNN) and support vector machines (SVM). As a benchmark model simple k-nearest neighbor algorithm is considered. PNN is a neural network reformulation of well known nonparametric principles of probability density modeling using kernel density estimator and Bayesian optimal or maximum a posteriori decision rules. PNN is well suited to problems where not only predictions but also quantification of accuracy and integration of prior information are necessary. An important property of PNN is that they can be easily used in decision support systems dealing with problems of automatic classification. Support vector machine is an implementation of the principles of statistical learning theory for the classification tasks. Recently they were successfully applied for different environmental topics: classification of soil types and hydro-geological units, optimization of monitoring networks, susceptibility mapping of natural hazards. In the present paper both simulated and real data case studies (low and high dimensional) are considered. The main attention is paid to the detection and learning of spatial patterns by the algorithms applied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Domain growth in a system with nonconserved order parameter is studied. We simulate the usual Ising model for binary alloys with concentration 0.5 on a two-dimensional square lattice by Monte Carlo techniques. Measurements of the energy, jump-acceptance ratio, and order parameters are performed. Dynamics based on the diffusion of a single vacancy in the system gives a growth law faster than the usual Allen-Cahn law. Allowing vacancy jumps to next-nearest-neighbor sites is essential to prevent vacancy trapping in the ordered regions. By measuring local order parameters we show that the vacancy prefers to be in the disordered regions (domain boundaries). This naturally concentrates the atomic jumps in the domain boundaries, accelerating the growth compared with the usual exchange mechanism that causes jumps to be homogeneously distributed on the lattice.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An Ising-like model, with interactions ranging up to next-nearest-neighbor pairs, is used to simulate the process of interface alloying. Interactions are chosen to stabilize an intermediate "antiferromagnetic" ordered structure. The dynamics proceeds exclusively by atom-vacancy exchanges. In order to characterize the process, the time evolution of the width of the intermediate ordered region and the diffusion length is studied. Both lengths are found to follow a power-law evolution with exponents depending on the characteristic features of the model.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A Monte Carlo study of the late time growth of L12-ordered domains in a fcc A3B binary alloy is presented. The energy of the alloy has been modeled by a nearest-neighbor interaction Ising Hamiltonian. The system exhibits a fourfold degenerated ground state and two kinds of interfaces separating ordered domains: flat and curved antiphase boundaries. Two different dynamics are used in the simulations: the standard atom-atom exchange mechanism and the more realistic vacancy-atom exchange mechanism. The results obtained by both methods are compared. In particular we study the time evolution of the excess energy, the structure factor and the mean distance between walls. In the case of atom-atom exchange mechanism anisotropic growth has been found: two characteristic lengths are needed in order to describe the evolution. Contrarily, with the vacancyatom exchange mechanism scaling with a single length holds. Results are contrasted with existing experiments in Cu3Au and theories for anisotropic growth.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We consider a lattice-gas model of particles with internal orientational degrees of freedom. In addition to antiferromagnetic nearest-neighbor (NN) and next-nearest-neighbor (NNN) positional interactions we also consider NN and NNN interactions arising from the internal state of the particles. The system then shows positional and orientational ordering modes with associated phase transitions at Tp and To temperatures at which long-range positional and orientational ordering are, respectively, lost. We use mean-field techniques to obtain a general approach to the study of these systems. By considering particular forms of the orientational interaction function we study coupling effects between both phase transitions arising from the interplay between orientational and positional degrees of freedom. In mean-field approximation coupling effects appear only for the phase transition taking place at lower temperatures. The strength of the coupling depends on the value of the long-range order parameter that remains finite at that temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The mean-field theory of a spin glass with a specific form of nearest- and next-nearest-neighbor interactions is investigated. Depending on the sign of the interaction matrix chosen we find either the continuous replica symmetry breaking seen in the Sherrington-Kirkpartick model or a one-step solution similar to that found in structural glasses. Our results are confirmed by numerical simulations and the link between the type of spin-glass behavior and the density of eigenvalues of the interaction matrix is discussed.