167 resultados para Nanosheets


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigation of oxidation resistance of two-dimensional (2D) materials is critical for many of their applications because 2D materials could have higher oxidation kinetics than their bulk counterparts due to predominant surface atoms and structural distortions. In this study, the oxidation behavior of high-quality boron nitride (BN) nanosheets of 1-4 layers thick has been examined by heating in air. Atomic force microscopy and Raman spectroscopy analyses reveal that monolayer BN nanosheets can sustain up to 850 °C, and the starting temperature of oxygen doping/oxidation of BN nanosheets only slightly increases with the increase of nanosheet layer and depends on heating conditions. Elongated etch lines are found on the oxidized monolayer BN nanosheets, suggesting that the BN nanosheets are first cut along the chemisorbed oxygen chains and then the oxidative etching grows perpendicularly to these cut lines. The stronger oxidation resistance of BN nanosheets makes them more preferable for high-temperature applications than graphene.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Magnetic force microscopy (MFM) signals have recently been detected from whole pieces of mechanically exfoliated graphene and molybdenum disulfide (MoS2) nanosheets, and magnetism of the two nanomaterials was claimed based on these observations. However, non-magnetic interactions or artefacts are commonly associated with MFM signals, which make the interpretation of MFM signals not straightforward. A systematic investigation has been done to examine possible sources of the MFM signals from graphene and MoS2 nanosheets and whether the MFM signals can be correlated with magnetism. It is found that the MFM signals have significant non-magnetic contributions due to capacitive and electrostatic interactions between the nanosheets and conductive cantilever tip, as demonstrated by electric force microscopy and scanning Kevin probe microscopy analyses. In addition, the MFM signals of graphene and MoS2 nanosheets are not responsive to reversed magnetic field of the magnetic cantilever tip. Therefore, the observed MFM response is mainly from electric artefacts and not compelling enough to correlate with magnetism of graphene and MoS2 nanosheets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-dimensional (2D) hexagonal boron nitride (BN) nanosheets are excellent dielectric substrate for graphene, molybdenum disulfide, and many other 2D nanomaterial-based electronic and photonic devices. To optimize the performance of these 2D devices, it is essential to understand the dielectric screening properties of BN nanosheets as a function of the thickness. Here, electric force microscopy along with theoretical calculations based on both state-of-the-art first-principles calculations with van der Waals interactions under consideration, and nonlinear Thomas-Fermi theory models are used to investigate the dielectric screening in high-quality BN nanosheets of different thicknesses. It is found that atomically thin BN nanosheets are less effective in electric field screening, but the screening capability of BN shows a relatively weak dependence on the layer thickness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sandwich-type hybrid carbon nanosheets (SCNMM) consisting of graphene and micro/mesoporous carbon layer are fabricated via a double template method using graphene oxide as the shape-directing agent and SiO2 nanoparticles as the mesoporous guide. The polypyrrole synthesized in situ on the graphene oxide sheets is used as a carbon precursor. The micro/mesoporous strcutures of the SCNMM are created by a carbonization process followed by HF solution etching and KOH treatment. Sulfur is impregnated into the hybrid carbon nanosheets to generate S@SCNMM composites for the cathode materials in Li-S secondary batteries. The microstructures and electrochemical performance of the as-prepared samples are investigated in detail. The hybrid carbon nanosheets, which have a thickness of about 10-25 nm, high surface area of 1588 m2 g-1, and broad pore size distribution of 0.8-6.0 nm, are highly interconnected to form a 3D hierarchical structure. The S@SCNMM sample with the sulfur content of 74 wt% exhibits excellent electrochemical performance, including large reversible capacity, good cycling stability and coulombic efficiency, and good rate capability, which is believed to be due to the structure of hybrid carbon materials with hierarchical porous structure, which have large specific surface area and pore volume.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydrogen is considered one of the best energy sources. However, the lack of effective, stable, and safe storage materials has severely prevented its practical application. Strong effort has been made to try new nanostructured materials as new storage materials. In this study, oxygen-doped boron nitride (BN) nanosheets with 2-6 atomic layers, synthesized by a facile sol-gel method, show a storage capacity of 5.7wt% under 5MPa at room temperature, which is the highest hydrogen storage ever reported for any BN materials. Importantly, 89% of the stored hydrogen can be released when the hydrogen pressure is reduced to ambient conditions. Furthermore, the BN nanosheets exhibit an excellent storage cycling stability due to the stable two-dimensional nanostructure. The first principles calculations reveal that the high hydrogen storage mainly origins from the oxygen-doping of the BN nanosheets with increased adsorption energies of H2 on BN by 20-80% over pure BN sheets at the different coverage. © 2014 Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although tailored wet ball milling can be an efficient method to produce a large quantity of two-dimensional nanomaterials, such as boron nitride (BN) nanosheets, milling parameters including milling speed, ball-to-powder ratio, milling ball size and milling agent, are important for optimization of exfoliation efficiency and production yield. In this report, we systematically investigate the effects of different milling parameters on the production of BN nanosheets with benzyl benzoate being used as the milling agent. It is found that small balls of 0.1-0.2 mm in diameter are much more effective in exfoliating BN particles to BN nanosheets. Under the optimum condition, the production yield can be as high as 13.8% and the BN nanosheets are 0.5-1.5 μm in diameter and a few nanometers thick and of relative high crystallinity and chemical purity. The lubrication properties of the BN nanosheets in base oil have also been studied. The tribological tests show that the BN nanosheets can greatly reduce the friction coefficient and wear scar diameter of the base oil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atomically thin boron nitride (BN) nanosheets have been found to be excellent substrates for noble metal particles enabled surface enhanced Raman spectroscopy (SERS), thanks to their good adsorption of aromatic molecules, high thermal stability and weak Raman scattering. Faceted gold (Au) nanoparticles have been synthesized on BN nanosheets using a simple but controllable and reproducible sputtering and annealing method. The size and density of the Au particles can be controlled by sputtering time, current and annealing temperature etc. Under the same sputtering and annealing conditions, the Au particles on BN of different thicknesses show various sizes because the surface diffusion coefficients of Au depend on the thickness of BN. Intriguingly, decorated with similar morphology and distribution of Au particles, BN nanosheets exhibit better Raman enhancements than silicon substrates as well as bulk BN crystals. Additionally, BN nanosheets show no noticeable SERS signal and hence cause no interference to the Raman signal of the analyte. The Au/BN substrates can be reused by heating in air to remove the adsorbed analyte without loss of SERS enhancement.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Molybdenum disulfide (MoS2) nanosheets have unique physical and chemical properties, which make it a perfect candidate for next generation electronic and energy storage applications. Herein, we show the successful synthesis of nitrogen-doped MoS2 nanosheets by a simple, effective and large-scale approach. MoS2 nanosheets synthesised by this method show a porous structure formed by curled and overlapped nanosheets with well-defined edges. Analysis of the nanosheets shows that they have an enlarged interlayer distance and high specific surface area. X-ray photoelectron spectroscopy analysis shows the nanosheets have Mo-N bond indicating successful nitrogen doping. The nitrogen content of the product can be modulated by adjusting the ratio of starting materials easily within the range from ca. 5.8 to 7.6 at%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Boron nitride nanosheets (BNNSs), so-called “white graphene”, have recently received increasing attention, both theoretically and experimentally. Although many synthetic procedures have been proposed for the synthesis of BNNSs, finding a simple, solvent-less, catalyst-free, and large-scale production route is still a challenge. Here, a facile, solvent-less, low cost, and high yield process is developed, in which mechanical solid-state exfoliation allows scalable production of crumple BNNSs from commercial BN powders with a high surface area. Importantly, these BNNSs show unprecedentedly high adsorption of proteins described by various adsorption isotherms and kinetics models. In addition, the saturated BNNSs exhibit excellent recyclability, and maintain a high sorption capacity even after five cycles through simply regeneration process of heating in air. This easy recyclability route further demonstrates the great potential of BNNSs for water cleaning application.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Highly porous boron nitride nanosheets (BNNSs) were tested as a re-usable adsorbent for the removal of pharmaceuticals from aqueous solution. The BNNSs exhibit both unprecedentedly high adsorption capacities and excellent recyclability while maintaining their high adsorption capacity by a simple regeneration process. These advantages render BNNSs a promising material for water remediation applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the increasing interest in two-dimensional van der Waals materials, molybdenum disulfide (MoS2) has emerged as a promising material for electronic and energy storage devices. It suffers from poor cycling stability and low rate capability when used as an anode in lithium ion batteries. Here, N-doped MoS2 nanosheets with 2-8 atomic layers, increased interlayer distance, mesoporous structure and high surface area synthesised by a simple sol-gel method show an enhanced lithium storage performance, delivering a high reversible capacity (998.0 mA h g-1, 50 mA g-1), high rate performance (610 mA h g-1, 2 A g-1), and excellent cycling stability. The excellent lithium storage performance of the MoS2 nanosheets might be due to the better electrical and ionic conductivity and improved lithium ion diffusion which are related to their structural characteristics and high concentration N doping. The possible mechanism of the improved performance is proposed and discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)