986 resultados para NEURODEGENERATIVE DISEASE


Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Alzheimer’s disease (AD), the most prevalent form of age-related dementia, is a multifactorial and heterogeneous neurodegenerative disease. The molecular mechanisms underlying the pathogenesis of AD are yet largely unknown. However, the etiopathogenesis of AD likely resides in the interaction between genetic and environmental risk factors. Among the different factors that contribute to the pathogenesis of AD, amyloid-beta peptides and the genetic risk factor apoE4 are prominent on the basis of genetic evidence and experimental data. ApoE4 transgenic mice have deficits in spatial learning and memory associated with inflammation and brain atrophy. Evidences suggest that apoE4 is implicated in amyloid-beta accumulation, imbalance of cellular antioxidant system and in apoptotic phenomena. The mechanisms by which apoE4 interacts with other AD risk factors leading to an increased susceptibility to the dementia are still unknown. The aim of this research was to provide new insights into molecular mechanisms of AD neurodegeneration, investigating the effect of amyloid-beta peptides and apoE4 genotype on the modulation of genes and proteins differently involved in cellular processes related to aging and oxidative balance such as PIN1, SIRT1, PSEN1, BDNF, TRX1 and GRX1. In particular, we used human neuroblastoma cells exposed to amyloid-beta or apoE3 and apoE4 proteins at different time-points, and selected brain regions of human apoE3 and apoE4 targeted replacement mice, as in vitro and in vivo models, respectively. All genes and proteins studied in the present investigation are modulated by amyloid-beta and apoE4 in different ways, suggesting their involvement in the neurodegenerative mechanisms underlying the AD. Finally, these proteins might represent novel potential diagnostic and therapeutic targets in AD.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Neurodegenerative diseases are characterised by selective damage to specific neurons in the nervous system. Interest in such diseases in humans has resulted in considerable progress in the molecular understanding of these disorders in recent decades. Numerous neurodegenerative diseases have also been described in domestic animals but relatively little molecular work has been reported. In the present review, we have classified neurodegenerative disease according to neuroanatomical criteria. We have established two large groups, based on whether the neuronal cell body or its axon was primarily affected. Conditions such as motor neuron diseases, cerebellar degenerations and neuroaxonal dystrophies are discussed in terms of their clinical and neuropathological features. In the most studied disorders, we also present what is known about underlying pathomechanisms, and compare them with their human counterparts. The purpose of this review is to re-kindle interest in this group of diseases and to encourage veterinary researchers to investigate molecular mechanisms by taking advantage of current diagnostic tools.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Delaying clinical disease onset would greatly reduce neurodegenerative disease burden, but the mechanisms influencing early preclinical progression are poorly understood. Here, we show that in mouse models of familial motoneuron (MN) disease, SOD1 mutants specifically render vulnerable MNs dependent on endogenous neuroprotection signaling involving excitability and mammalian target of rapamycin (mTOR). The most vulnerable low-excitability FF MNs already exhibited evidence of pathology and endogenous neuroprotection recruitment early postnatally. Enhancing MN excitability promoted MN neuroprotection and reversed misfolded SOD1 (misfSOD1) accumulation and MN pathology, whereas reducing MN excitability augmented misfSOD1 accumulation and accelerated disease. Inhibiting metabotropic cholinergic signaling onto MNs reduced ER stress, but enhanced misfSOD1 accumulation and prevented mTOR activation in alpha-MNs. Modulating excitability and/or alpha-MN mTOR activity had comparable effects on the progression rates of motor dysfunction, denervation, and death. Therefore, excitability and mTOR are key endogenous neuroprotection mechanisms in motoneurons to counteract clinically important disease progression in ALS.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Huntington's disease (HD) is a neurodegenerative disease caused by polyglutamine expansion in the protein huntingtin (htt). Pathogenesis in HD appears to involve the formation of ubiquitinated neuronal intranuclear inclusions containing N-terminal mutated htt, abnormal protein interactions, and the aggregate sequestration of a variety of proteins (noticeably, transcription factors). To identify novel htt-interacting proteins in a simple model system, we used a yeast two-hybrid screen with a Caenorhabditis elegans activation domain library. We found a predicted WW domain protein (ZK1127.9) that interacts with N-terminal fragments of htt in two-hybrid tests. A human homologue of ZK1127.9 is CA150, a transcriptional coactivator with a N-terminal insertion that contains an imperfect (Gln-Ala)38 tract encoded by a polymorphic repeat DNA. CA150 interacted in vitro with full-length htt from lymphoblastoid cells. The expression of CA150, measured immunohistochemically, was markedly increased in human HD brain tissue compared with normal age-matched human brain tissue, and CA150 showed aggregate formation with partial colocalization to ubiquitin-positive aggregates. In 432 HD patients, the CA150 repeat length explains a small, but statistically significant, amount of the variability in the onset age. Our data suggest that abnormal expression of CA150, mediated by interaction with polyglutamine-expanded htt, may alter transcription and have a role in HD pathogenesis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The downstream prion-like protein (doppel, or Dpl) is a paralog of the cellular prion protein, PrPC. The two proteins have ≈25% sequence identity, but seem to have distinct physiologic roles. Unlike PrPC, Dpl does not support prion replication; instead, overexpression of Dpl in the brain seems to cause a completely different neurodegenerative disease. We report the solution structure of a fragment of recombinant mouse Dpl (residues 26–157) containing a globular domain with three helices and a small amount of β-structure. Overall, the topology of Dpl is very similar to that of PrPC. Significant differences include a marked kink in one of the helices in Dpl, and a different orientation of the two short β-strands. Although the two proteins most likely arose through duplication of a single ancestral gene, the relationship is now so distant that only the structures retain similarity; the functions have diversified along with the sequence.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Huntington disease is a dominantly inherited, untreatable neurological disorder featuring a progressive loss of striatal output neurons that results in dyskinesia, cognitive decline, and, ultimately, death. Neurotrophic factors have recently been shown to be protective in several animal models of neurodegenerative disease, raising the possibility that such substances might also sustain the survival of compromised striatal output neurons. We determined whether intracerebral administration of brain-derived neurotrophic factor, nerve growth factor, neurotrophin-3, or ciliary neurotrophic factor could protect striatal output neurons in a rodent model of Huntington disease. Whereas treatment with brain-derived neurotrophic factor, nerve growth factor, or neurotrophin-3 provided no protection of striatal output neurons from death induced by intrastriatal injection of quinolinic acid, an N-methyl-D-aspartate glutamate receptor agonist, treatment with ciliary neurotrophic factor afforded marked protection against this neurodegenerative insult.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Trabalho Final do Curso de Mestrado Integrado em Medicina, Faculdade de Medicina, Universidade de Lisboa, 2014

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Neurodegenerative disorders are characterized by the formation of distinct pathological changes in the brain, including extracellular protein deposits, cellular inclusions, and changes in cell morphology. Since the earliest published descriptions of these disorders, diagnosis has been based on clinicopathological features, namely, the coexistence of a specific clinical profile together with the presence or absence of particular types of lesion. In addition, the molecular profile of lesions has become an increasingly important feature both in the diagnosis of existing disorders and in the description of new disease entities. Recent studies, however, have reported considerable overlap between the clinicopathological features of many disorders leading to difficulties in the diagnosis of individual cases and to calls for a new classification of neurodegenerative disease. This article discusses: (i) the nature and degree of the overlap between different neurodegenerative disorders and includes a discussion of Alzheimer's disease, dementia with Lewy bodies, the fronto-temporal dementias, and prion disease; (ii) the factors that contribute to disease overlap, including historical factors, the presence of disease heterogeneity, age-related changes, the problem of apolipoprotein genotype, and the co-occurrence of common diseases; and (iii) whether the current nosological status of disorders should be reconsidered.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The use of quantitative methods has become increasingly important in the study of neurodegenerative disease. Disorders such as Alzheimer's disease (AD) are characterized by the formation of discrete, microscopic, pathological lesions which play an important role in pathological diagnosis. This article reviews the advantages and limitations of the different methods of quantifying the abundance of pathological lesions in histological sections, including estimates of density, frequency, coverage, and the use of semiquantitative scores. The major sampling methods by which these quantitative measures can be obtained from histological sections, including plot or quadrat sampling, transect sampling, and point-quarter sampling, are also described. In addition, the data analysis methods commonly used to analyse quantitative data in neuropathology, including analyses of variance (ANOVA) and principal components analysis (PCA), are discussed. These methods are illustrated with reference to particular problems in the pathological diagnosis of AD and dementia with Lewy bodies (DLB).

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Neuronal intermediate filament inclusion disease (NIFID) is a new neurodegenerative disease characterized histologically by the presence of neuronal cytoplasmic inclusions (NI) immunopositive for intermediate filament proteins, neuronal loss, swollen achromatic neurons (SN), and gliosis. We studied the spatial patterns of these pathological changes parallel to the pia mater in gyri of the temporal lobe in four cases of NIFID. Both the NI and SN occurred in clusters that were regularly distributed parallel to the pia mater, the cluster sizes of the SN being significantly greater than those of the NI. In a significant proportion of areas studied, there was a spatial correlation between the clusters of NI and those of the SN and with the density of the surviving neurons. In addition, the clusters of surviving neurons were negatively correlated (out of phase) with the clusters of glial cell nuclei. The pattern of clustering of these histological features suggests that there is degeneration of the cortico-cortical projections in NIFID leading to the formation of NI and SN within the same vertical columns of cells. The glial cell reaction may be a response to the loss of neurons rather than to the appearance of the NI or SN.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: To quantify the densities of neurofilament inclusions (NI), swollen achromatic neurons, surviving neurons and glial cells in a novel neurofilamentopathy neurofilament inclusion disease (NID). Material: Sectionsof temporal lobe from 4 cases of NID stained with an antibody raised to neurofilament proteins. Method: Densities of the pathological changes were estimated in the various gyri of the temporal lobe, hippocampus and dentate gyrus. Results: Densities of the NI and swollen achromatic neurons (SN) were greater in the cerebral cortical gyri than in the hippocampus and dentate gyrus. Lesion density was relatively constant between gyri and between the CA sectors of the hippocampus. In cortical gyri, the density of the NI, SN and glial cell nuclei was greater in laminae II/III than laminae V/VI. Densities of the NI were negatively correlated with the surviving neurons and positively correlated with the glial cell nuclei. The density of the SN was positively correlated with that of the surviving neurons. Conclusion: The pathology of NID morphologically resembles that of Pick's disease (PD) and corticobasal degeneration (CBD), but there are distinct differences between NID and these disorders supporting the hypothesis that NID is a novel and unique type of neurodegenerative disease.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Neurofilament inclusion disease (NID) is a novel neurodegenerative disease characterized histologically by the presence of neurofilament positive neuronal inclusions (NI) and swollen achromatic neurons (SN). The density and distribution of NI and SN were studied in areas of the temporal lobe in four cases of NID. In NID, the density of the NI and SN was greater in areas of the cerebral cortex compared with the hippocampus and dentate gyrus. Lesion densities were similar in the different gyri of the temporal cortex and in the various cornu ammonis sectors of the hippocampus. In the cerebral cortex, the density of the NI and SN was greater in the lower compared with the upper cortical laminae. There was no significant correlation between the densities of the NI and SN. The distribution of the temporal lobe pathology of NID has several differences from that reported in Pick's disease and corticobasal degeneration supporting the hypothesis that NID is a novel and unique type of neurodegenerative disease. © 2003 Elsevier Ireland Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The traditional method of classifying neurodegenerative diseases is based on the original clinico-pathological concept supported by 'consensus' criteria and data from molecular pathological studies. This review discusses first, current problems in classification resulting from the coexistence of different classificatory schemes, the presence of disease heterogeneity and multiple pathologies, the use of 'signature' brain lesions in diagnosis, and the existence of pathological processes common to different diseases. Second, three models of neurodegenerative disease are proposed: (1) that distinct diseases exist ('discrete' model), (2) that relatively distinct diseases exist but exhibit overlapping features ('overlap' model), and (3) that distinct diseases do not exist and neurodegenerative disease is a 'continuum' in which there is continuous variation in clinical/pathological features from one case to another ('continuum' model). Third, to distinguish between models, the distribution of the most important molecular 'signature' lesions across the different diseases is reviewed. Such lesions often have poor 'fidelity', i.e., they are not unique to individual disorders but are distributed across many diseases consistent with the overlap or continuum models. Fourth, the question of whether the current classificatory system should be rejected is considered and three alternatives are proposed, viz., objective classification, classification for convenience (a 'dissection'), or analysis as a continuum.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Parkinson’s disease (PD) is a progressive neurodegenerative disease characterised by motor and non-motor symptoms, resulting from the degeneration of nigrostriatal dopaminergic neurons and peripheral autonomic neurons. Given the limited success of neurotrophic factors in clinical trials, there is a need to identify new small molecule drugs and drug targets to develop novel therapeutic strategies to protect all neurons that degenerate in PD. Epigenetic dysregulation has been implicated in neurodegenerative disorders, while targeting histone acetylation is a promising therapeutic avenue for PD. We and others have demonstrated that histone deacetylase inhibitors have neurotrophic effects in experimental models of PD. Activators of histone acetyltransferases (HAT) provide an alternative approach for the selective activation of gene expression, however little is known about the potential of HAT activators as drug therapies for PD. To explore this potential, the present study investigated the neurotrophic effects of CTPB (N-(4-chloro-3-trifluoromethyl-phenyl)-2-ethoxy-6-pentadecyl-benzamide), which is a potent small molecule activator of the histone acetyltransferase p300/CBP, in the SH-SY5Y neuronal cell line. We report that CTPB promoted the survival and neurite growth of the SH-SY5Y cells, and also protected these cells from cell death induced by the neurotoxin 6-hydroxydopamine. This study is the first to investigate the phenotypic effects of the HAT activator CTPB, and to demonstrate that p300/CBP HAT activation has neurotrophic effects in a cellular model of PD.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Alzheimer’s disease (AD) is the most prevalent age-related neurodegenerative disease that leads to cognitive impairment and dementia. The major defined pathological hallmark of AD is the accumulation of amyloid beta (Aβ), a neurotoxic peptide, derived from beta and gamma-secretase cleavage of the amyloid precursor protein (APP). It has been described that cellular prion protein (PrPC) plays a role in the pathogenesis of Alzheimer disease. Although, the role of PrPC is still unclear, previous studies showed contradictious results. To elucidate this issue, the main objective of the present study is to investigate the influence of a knockout of the PRNP gene in 5XFAD mice, 5xFAD mice exhibited 5 mutations related to familial Alzheimer disease. These mice show an Aβ1-42 accumulation and an increased neuronal loss during aging. To create a bi-transgenic 5xFAD mice were crossed with Prnp0/0 Zurich 1 mice (prion protein knockout mice). We subjected two transgenic mice (5xFAD and Prnp0/05xFAD) at different ages (3, 9 and 12 months of age) to a battery of task to evaluate cognitive and motoric deficits and a biochemical analysis (ELISA, western blot and immunohistochemistry) to investigate the regulation and potential involvement of downstream signaling proteins in the Aβ induced toxicity process dependent of the PrPC concentration. The study revealed that the deficits induced by Aβ mediated toxicity appeared earlier in 5xFAD mice (9 months of age) than in Prnp0/05xFAD (12 months of age). Investigating the amount of amyloid beta in 5xFAD mice we observed a PrPC dependent regulation in 9 month-old animals of Aβ1−40 but not of the toxic form Aβ1−42. We did not found in Prnp0/05xFAD mice the up-regulation of P-Fyn, Fyn or Cav-1 as we found in 5xFAD mice. This suggests an important role of PrPC in Alzheimer’s disease as a promoter of toxic effect of Aβ oligomers. Our results may suggest the loss of PrPC delays the toxicity of amyloid beta. In conclusion, our data support a role of PrPC as a mediator of Aβ toxicity in AD by promoting early onset of disease.