934 resultados para Muti-Modal Biometrics, User Authentication, Fingerprint Recognition, Palm Print Recognition
Resumo:
La machine à vecteurs de support à une classe est un algorithme non-supervisé qui est capable d’apprendre une fonction de décision à partir de données d’une seule classe pour la détection d’anomalie. Avec les données d’entraînement d’une seule classe, elle peut identifier si une nouvelle donnée est similaire à l’ensemble d’entraînement. Dans ce mémoire, nous nous intéressons à la reconnaissance de forme de dynamique de frappe par la machine à vecteurs de support à une classe, pour l’authentification d’étudiants dans un système d’évaluation sommative à distance à l’Université Laval. Comme chaque étudiant à l’Université Laval possède un identifiant court, unique qu’il utilise pour tout accès sécurisé aux ressources informatiques, nous avons choisi cette chaîne de caractères comme support à la saisie de dynamique de frappe d’utilisateur pour construire notre propre base de données. Après avoir entraîné un modèle pour chaque étudiant avec ses données de dynamique de frappe, on veut pouvoir l’identifier et éventuellement détecter des imposteurs. Trois méthodes pour la classification ont été testées et discutées. Ainsi, nous avons pu constater les faiblesses de chaque méthode dans ce système. L’évaluation des taux de reconnaissance a permis de mettre en évidence leur dépendance au nombre de signatures ainsi qu’au nombre de caractères utilisés pour construire les signatures. Enfin, nous avons montré qu’il existe des corrélations entre le taux de reconnaissance et la dispersion dans les distributions des caractéristiques des signatures de dynamique de frappe.
Resumo:
Recently, a convex hull-based human identification protocol was proposed by Sobrado and Birget, whose steps can be performed by humans without additional aid. The main part of the protocol involves the user mentally forming a convex hull of secret icons in a set of graphical icons and then clicking randomly within this convex hull. While some rudimentary security issues of this protocol have been discussed, a comprehensive security analysis has been lacking. In this paper, we analyze the security of this convex hull-based protocol. In particular, we show two probabilistic attacks that reveal the user’s secret after the observation of only a handful of authentication sessions. These attacks can be efficiently implemented as their time and space complexities are considerably less than brute force attack. We show that while the first attack can be mitigated through appropriately chosen values of system parameters, the second attack succeeds with a non-negligible probability even with large system parameter values that cross the threshold of usability.
Resumo:
User authentication is essential for accessing computing resources, network resources, email accounts, online portals etc. To authenticate a user, system stores user credentials (user id and password pair) in system. It has been an interested field problem to discover user password from a system and similarly protecting them against any such possible attack. In this work we show that passwords are still vulnerable to hash chain based and efficient dictionary attacks. Human generated passwords use some identifiable patterns. We have analysed a sample of 19 million passwords, of different lengths, available online and studied the distribution of the symbols in the password strings. We show that the distribution of symbols in user passwords is affected by the native language of the user. From symbol distributions we can build smart and efficient dictionaries, which are smaller in size and their coverage of plausible passwords from Key-space is large. These smart dictionaries make dictionary based attacks practical.
Resumo:
European Regulation 1169/2011 requires producers of foods that contain refined vegetable oils to label the oil types. A novel rapid and staged methodology has been developed for the first time to identify common oil species in oil blends. The qualitative method consists of a combination of a Fourier Transform Infrared (FTIR) spectroscopy to profile the oils and fatty acid chromatographic analysis to confirm the composition of the oils when required. Calibration models and specific classification criteria were developed and all data were fused into a simple decision-making system. The single lab validation of the method demonstrated the very good performance (96% correct classification, 100% specificity, 4% false positive rate). Only a small fraction of the samples needed to be confirmed with the majority of oils identified rapidly using only the spectroscopic procedure. The results demonstrate the huge potential of the methodology for a wide range of oil authenticity work.
Resumo:
In forensic investigations, it is common for forensic investigators to obtain a photograph of evidence left at the scene of crimes to aid them catch the culprit(s). Although, fingerprints are the most popular evidence that can be used, scene of crime officers claim that more than 30% of the evidence recovered from crime scenes originate from palms. Usually, palmprints evidence left at crime scenes are partial since very rarely full palmprints are obtained. In particular, partial palmprints do not exhibit a structured shape and often do not contain a reference point that can be used for their alignment to achieve efficient matching. This makes conventional matching methods based on alignment and minutiae pairing, as used in fingerprint recognition, to fail in partial palmprint recognition problems. In this paper a new partial-to-full palmprint recognition based on invariant minutiae descriptors is proposed where the partial palmprint’s minutiae are extracted and considered as the distinctive and discriminating features for each palmprint image. This is achieved by assigning to each minutiae a feature descriptor formed using the values of all the orientation histograms of the minutiae at hand. This allows for the descriptors to be rotation invariant and as such do not require any image alignment at the matching stage. The results obtained show that the proposed technique yields a recognition rate of 99.2%. The solution does give a high confidence to the judicial jury in their deliberations and decision.
Resumo:
Trabalho de Projeto para obtenção do grau de Mestre em Engenharia de Eletrónica e Telecomunicações
Resumo:
Pós-graduação em Ciência da Computação - IBILCE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
[EN]This paper does not propose a new technique for face representationorclassification. Insteadtheworkdescribed here investigates the evolution of an automatic system which, based on a currently common framework, and starting from an empty memory, modifies its classifiers according to experience. In the experiments we reproduce up to a certain extent the process of successive meetings. The results achieved, even when the number of different individuals is still reduced compared to off-line classifiers, are promising.
Resumo:
This paper presents a proposal for an advanced system of debate in an environment of digital democracy which overcomes the limitations of existing systems. We have been especially careful in applying security procedures in telematic systems, for they are to offer citizens the guarantees that society demands. New functional tools have been included to ensure user authentication and to permit anonymous participation where the system is unable to disclose or even to know the identity of system users. The platform prevents participation by non-entitled persons who do not belong to the authorized group from giving their opinion. Furthermore, this proposal allows for verifying the proper function of the system, free of tampering or fraud intended to alter the conclusions or outcomes of participation. All these tools guarantee important aspects of both a social and technical nature, most importantly: freedom of expression, equality and auditability.
Resumo:
As the telecommunications industry evolves over the next decade to provide the products and services that people will desire, several key technologies will become commonplace. Two of these, automatic speech recognition and text-to-speech synthesis, will provide users with more freedom on when, where, and how they access information. While these technologies are currently in their infancy, their capabilities are rapidly increasing and their deployment in today's telephone network is expanding. The economic impact of just one application, the automation of operator services, is well over $100 million per year. Yet there still are many technical challenges that must be resolved before these technologies can be deployed ubiquitously in products and services throughout the worldwide telephone network. These challenges include: (i) High level of accuracy. The technology must be perceived by the user as highly accurate, robust, and reliable. (ii) Easy to use. Speech is only one of several possible input/output modalities for conveying information between a human and a machine, much like a computer terminal or Touch-Tone pad on a telephone. It is not the final product. Therefore, speech technologies must be hidden from the user. That is, the burden of using the technology must be on the technology itself. (iii) Quick prototyping and development of new products and services. The technology must support the creation of new products and services based on speech in an efficient and timely fashion. In this paper I present a vision of the voice-processing industry with a focus on the areas with the broadest base of user penetration: speech recognition, text-to-speech synthesis, natural language processing, and speaker recognition technologies. The current and future applications of these technologies in the telecommunications industry will be examined in terms of their strengths, limitations, and the degree to which user needs have been or have yet to be met. Although noteworthy gains have been made in areas with potentially small user bases and in the more mature speech-coding technologies, these subjects are outside the scope of this paper.
Resumo:
This dissertation develops an image processing framework with unique feature extraction and similarity measurements for human face recognition in the thermal mid-wave infrared portion of the electromagnetic spectrum. The goals of this research is to design specialized algorithms that would extract facial vasculature information, create a thermal facial signature and identify the individual. The objective is to use such findings in support of a biometrics system for human identification with a high degree of accuracy and a high degree of reliability. This last assertion is due to the minimal to no risk for potential alteration of the intrinsic physiological characteristics seen through thermal infrared imaging. The proposed thermal facial signature recognition is fully integrated and consolidates the main and critical steps of feature extraction, registration, matching through similarity measures, and validation through testing our algorithm on a database, referred to as C-X1, provided by the Computer Vision Research Laboratory at the University of Notre Dame. Feature extraction was accomplished by first registering the infrared images to a reference image using the functional MRI of the Brain’s (FMRIB’s) Linear Image Registration Tool (FLIRT) modified to suit thermal infrared images. This was followed by segmentation of the facial region using an advanced localized contouring algorithm applied on anisotropically diffused thermal images. Thermal feature extraction from facial images was attained by performing morphological operations such as opening and top-hat segmentation to yield thermal signatures for each subject. Four thermal images taken over a period of six months were used to generate thermal signatures and a thermal template for each subject, the thermal template contains only the most prevalent and consistent features. Finally a similarity measure technique was used to match signatures to templates and the Principal Component Analysis (PCA) was used to validate the results of the matching process. Thirteen subjects were used for testing the developed technique on an in-house thermal imaging system. The matching using an Euclidean-based similarity measure showed 88% accuracy in the case of skeletonized signatures and templates, we obtained 90% accuracy for anisotropically diffused signatures and templates. We also employed the Manhattan-based similarity measure and obtained an accuracy of 90.39% for skeletonized and diffused templates and signatures. It was found that an average 18.9% improvement in the similarity measure was obtained when using diffused templates. The Euclidean- and Manhattan-based similarity measure was also applied to skeletonized signatures and templates of 25 subjects in the C-X1 database. The highly accurate results obtained in the matching process along with the generalized design process clearly demonstrate the ability of the thermal infrared system to be used on other thermal imaging based systems and related databases. A novel user-initialization registration of thermal facial images has been successfully implemented. Furthermore, the novel approach at developing a thermal signature template using four images taken at various times ensured that unforeseen changes in the vasculature did not affect the biometric matching process as it relied on consistent thermal features.
Resumo:
Continuous biometric authentication schemes (CBAS) are built around the biometrics supplied by user behavioural characteristics and continuously check the identity of the user throughout the session. The current literature for CBAS primarily focuses on the accuracy of the system in order to reduce false alarms. However, these attempts do not consider various issues that might affect practicality in real world applications and continuous authentication scenarios. One of the main issues is that the presented CBAS are based on several samples of training data either of both intruder and valid users or only the valid users' profile. This means that historical profiles for either the legitimate users or possible attackers should be available or collected before prediction time. However, in some cases it is impractical to gain the biometric data of the user in advance (before detection time). Another issue is the variability of the behaviour of the user between the registered profile obtained during enrollment, and the profile from the testing phase. The aim of this paper is to identify the limitations in current CBAS in order to make them more practical for real world applications. Also, the paper discusses a new application for CBAS not requiring any training data either from intruders or from valid users.
Resumo:
Fingerprint based authentication systems are one of the cost-effective biometric authentication techniques employed for personal identification. As the data base population increases, fast identification/recognition algorithms are required with high accuracy. Accuracy can be increased using multimodal evidences collected by multiple biometric traits. In this work, consecutive fingerprint images are taken, global singularities are located using directional field strength and their local orientation vector is formulated with respect to the base line of the finger. Feature level fusion is carried out and a 32 element feature template is obtained. A matching score is formulated for the identification and 100% accuracy was obtained for a database of 300 persons. The polygonal feature vector helps to reduce the size of the feature database from the present 70-100 minutiae features to just 32 features and also a lower matching threshold can be fixed compared to single finger based identification
Resumo:
Anti-spoofing is attracting growing interest in biometrics, considering the variety of fake materials and new means to attack biometric recognition systems. New unseen materials continuously challenge state-of-the-art spoofing detectors, suggesting for additional systematic approaches to target anti-spoofing. By incorporating liveness scores into the biometric fusion process, recognition accuracy can be enhanced, but traditional sum-rule based fusion algorithms are known to be highly sensitive to single spoofed instances. This paper investigates 1-median filtering as a spoofing-resistant generalised alternative to the sum-rule targeting the problem of partial multibiometric spoofing where m out of n biometric sources to be combined are attacked. Augmenting previous work, this paper investigates the dynamic detection and rejection of livenessrecognition pair outliers for spoofed samples in true multi-modal configuration with its inherent challenge of normalisation. As a further contribution, bootstrap aggregating (bagging) classifiers for fingerprint spoof-detection algorithm is presented. Experiments on the latest face video databases (Idiap Replay- Attack Database and CASIA Face Anti-Spoofing Database), and fingerprint spoofing database (Fingerprint Liveness Detection Competition 2013) illustrate the efficiency of proposed techniques.