884 resultados para Muscular torque
Resumo:
Digital Songlines (DSL) is an Australasian CRC for Interaction Design (ACID) project that is developing protocols, methodologies and toolkits to facilitate the collection, education and sharing of indigenous cultural heritage knowledge. This paper outlines the goals achieved over the last three years in the development of the Digital Songlines game engine (DSE) toolkit that is used for Australian Indigenous storytelling. The project explores the sharing of indigenous Australian Aboriginal storytelling in a sensitive manner using a game engine. The use of the game engine in the field of Cultural Heritage is expanding. They are an important tool for the recording and re-presentation of historically, culturally, and sociologically significant places, infrastructure, and artefacts, as well as the stories that are associated with them. The DSL implementation of a game engine to share storytelling provides an educational interface. Where the DSL implementation of a game engine in a CH application differs from others is in the nature of the game environment itself. It is modelled on the 'country' (the 'place' of their heritage which is so important to the clients' collective identity) and authentic fauna and flora that provides a highly contextualised setting for the stories to be told. This paper provides an overview on the development of the DSL game engine.
Resumo:
Braking or traction torque is regarded as an important source of wheelset skid and a potential source of derailment risk that adversely affects the safety levels of train operations; therefore, this research examines the effect of braking/traction torque to the longitudinal and lateral dynamics of wagons. This paper reports how train operations safety could be adversely affected due to various braking strategies. Sensitivity of wagon dynamics to braking severity is illustrated through numerical examples. The influence of wheel/rail interface friction coefficient and the effects of two types of track geometry defects on wheel unloading ratio and wagon pitch are also discussed in the paper.
Resumo:
In children, joint hypermobility (typified by structural instability of joints) manifests clinically as neuro-muscular and musculo-skeletal conditions and conditions associated with development and organization of control of posture and gait (Finkelstein, 1916; Jahss, 1919; Sobel, 1926; Larsson, Mudholkar, Baum and Srivastava, 1995; Murray and Woo, 2001; Hakim and Grahame, 2003; Adib, Davies, Grahame, Woo and Murray, 2005:). The process of control of the relative proportions of joint mobility and stability, whilst maintaining equilibrium in standing posture and gait, is dependent upon the complex interrelationship between skeletal, muscular and neurological function (Massion, 1998; Gurfinkel, Ivanenko, Levik and Babakova, 1995; Shumway-Cook and Woollacott, 1995). The efficiency of this relies upon the integrity of neuro-muscular and musculo-skeletal components (ligaments, muscles, nerves), and the Central Nervous System’s capacity to interpret, process and integrate sensory information from visual, vestibular and proprioceptive sources (Crotts, Thompson, Nahom, Ryan and Newton, 1996; Riemann, Guskiewicz and Shields, 1999; Schmitz and Arnold, 1998) and development and incorporation of this into a representational scheme (postural reference frame) of body orientation with respect to internal and external environments (Gurfinkel et al., 1995; Roll and Roll, 1988). Sensory information from the base of support (feet) makes significant contribution to the development of reference frameworks (Kavounoudias, Roll and Roll, 1998). Problems with the structure and/ or function of any one, or combination of these components or systems, may result in partial loss of equilibrium and, therefore ineffectiveness or significant reduction in the capacity to interact with the environment, which may result in disability and/ or injury (Crotts et al., 1996; Rozzi, Lephart, Sterner and Kuligowski, 1999b). Whilst literature focusing upon clinical associations between joint hypermobility and conditions requiring therapeutic intervention has been abundant (Crego and Ford, 1952; Powell and Cantab, 1983; Dockery, in Jay, 1999; Grahame, 1971; Childs, 1986; Barton, Bird, Lindsay, Newton and Wright, 1995a; Rozzi, et al., 1999b; Kerr, Macmillan, Uttley and Luqmani, 2000; Grahame, 2001), there has been a deficit in controlled studies in which the neuro-muscular and musculo-skeletal characteristics of children with joint hypermobility have been quantified and considered within the context of organization of postural control in standing balance and gait. This was the aim of this project, undertaken as three studies. The major study (Study One) compared the fundamental neuro-muscular and musculo-skeletal characteristics of 15 children with joint hypermobility, and 15 age (8 and 9 years), gender, height and weight matched non-hypermobile controls. Significant differences were identified between previously undiagnosed hypermobile (n=15) and non-hypermobile children (n=15) in passive joint ranges of motion of the lower limbs and lumbar spine, muscle tone of the lower leg and foot, barefoot CoP displacement and in parameters of barefoot gait. Clinically relevant differences were also noted in barefoot single leg balance time. There were no differences between groups in isometric muscle strength in ankle dorsiflexion, knee flexion or extension. The second comparative study investigated foot morphology in non-weight bearing and weight bearing load conditions of the same children with and without joint hypermobility using three dimensional images (plaster casts) of their feet. The preliminary phase of this study evaluated the casting technique against direct measures of foot length, forefoot width, RCSP and forefoot to rearfoot angle. Results indicated accurate representation of elementary foot morphology within the plaster images. The comparative study examined the between and within group differences in measures of foot length and width, and in measures above the support surface (heel inclination angle, forefoot to rearfoot angle, normalized arch height, height of the widest point of the heel) in the two load conditions. Results of measures from plaster images identified that hypermobile children have different barefoot weight bearing foot morphology above the support surface than non-hypermobile children, despite no differences in measures of foot length or width. Based upon the differences in components of control of posture and gait in the hypermobile group, identified in Study One and Study Two, the final study (Study Three), using the same subjects, tested the immediate effect of specifically designed custom-made foot orthoses upon balance and gait of hypermobile children. The design of the orthoses was evaluated against the direct measures and the measures from plaster images of the feet. This ascertained the differences in morphology of the modified casts used to mould the orthoses and the original image of the foot. The orthoses were fitted into standardized running shoes. The effect of the shoe alone was tested upon the non-hypermobile children as the non-therapeutic equivalent condition. Immediate improvement in balance was noted in single leg stance and CoP displacement in the hypermobile group together with significant immediate improvement in the percentage of gait phases and in the percentage of the gait cycle at which maximum plantar flexion of the ankle occurred in gait. The neuro-muscular and musculo-skeletal characteristics of children with joint hypermobility are different from those of non-hypermobile children. The Beighton, Solomon and Soskolne (1973) screening criteria successfully classified joint hypermobility in children. As a result of this study joint hypermobility has been identified as a variable which must be controlled in studies of foot morphology and function in children. The outcomes of this study provide a basis upon which to further explore the association between joint hypermobility and neuro-muscular and musculo-skeletal conditions, and, have relevance for the physical education of children with joint hypermobility, for footwear and orthotic design processes, and, in particular, for clinical identification and treatment of children with joint hypermobility.
Resumo:
Shaft-mounted gearboxes are widely used in industry. The torque arm that holds the reactive torque on the housing of the gearbox, if properly positioned creates the reactive force that lifts the gearbox and unloads the bearings of the output shaft. The shortcoming of these torque arms is that if the gearbox is reversed the direction of the reactive force on the torque arm changes to opposite and added to the weight of the gearbox overloads the bearings shortening their operating life. In this paper, a new patented design of torque arms that develop a controlled lifting force and counteract the weight of the gearbox regardless of the direction of the output shaft rotation is described. Several mathematical models of the conventional and new torque arms were developed and verified experimentally on a specially built test rig that enables modelling of the radial compliance of the gearbox bearings and elastic elements of the torque arms. Comparison showed a good agreement between theoretical and experimental results.
Resumo:
Track defects cause profound effects to the stability of railway wagons; normally such problems are modeled for cases of wagons running at constant speed. Brake/traction torque adversely affect the wheel-rail contact characteristics but they are not explicitly considered in most of the wagon-track interaction simulation packages. This research developed a program that can simulate the longitudinal behaviour of railway wagon dynamics under the actions of braking or traction torques. This paper describes the mathematical formulation of modelling of a full wagon system using a fixed coordinate reference system. The effect of both the lateral and the vertical track geometry defects to the dynamics of wagons is reported; sensitivity of traction/brake state is analysed through a series of numerical examples.
Resumo:
Applying ice or other forms of topical cooling is a popular method of treating sports injuries. It is commonplace for athletes to return to competitive activity, shortly or immediately after the application of a cold treatment. In this article, we examine the effect of local tissue cooling on outcomes relating to functional performance and to discuss their relevance to the sporting environment. A computerized literature search, citation tracking and hand search was performed up to April, 2011. Eligible studies were trials involving healthy human participants, describing the effects of cooling on outcomes relating to functional performance. Two reviewers independently assessed the validity of included trials and calculated effect sizes. Thirty five trials met the inclusion criteria; all had a high risk of bias. The mean sample size was 19. Meta-analyses were not undertaken due to clinical heterogeneity. The majority of studies used cooling durations >20 minutes. Strength (peak torque/force) was reported by 25 studies with approximately 75% recording a decrease in strength immediately following cooling. There was evidence from six studies that cooling adversely affected speed, power and agility-based running tasks; two studies found this was negated with a short rewarming period. There was conflicting evidence on the effect of cooling on isolated muscular endurance. A small number of studies found that cooling decreased upper limb dexterity and accuracy. The current evidence base suggests that athletes will probably be at a performance disadvantage if they return to activity immediately after cooling. This is based on cooling for longer than 20 minutes, which may exceed the durations employed in some sporting environments. In addition, some of the reported changes were clinically small and may only be relevant in elite sport. Until better evidence is available, practitioners should use short cooling applications and/or undertake a progressive warm up prior to returning to play.
Resumo:
Background: Hamstring strain injuries (HSIs) are prevalent in sport and re-injury rates have been high for many years. Whilst much focus has centred on the impact of previous hamstring strain injury on maximal eccentric strength, high rates of torque development is also of interest, given the important role of the hamstrings during the terminal swing phase of gait. The impact of prior strain injury on neuromuscular function of the hamstrings during tasks requiring high rates of torque development has received little attention. The purpose of this study is to determine if recreational athletes with a history of unilateral hamstring strain injury, who have returned to training and competition, will exhibit lower levels of eccentric muscle activation, rate of torque development and impulse 30, 50 and 100ms after the onset of electromyographical or torque development in the previously injured limb compared to the uninjured limb. Methods: Twenty-six recreational athletes were recruited. Of these, 13 athletes had a history of unilateral hamstring strain injury (all confined to biceps femoris long head) and 13 had no history of hamstring strain injury. Following familiarisation, all athletes undertook isokinetic dynamometry testing and surface electromyography assessment of the biceps femoris long head and medial hamstrings during eccentric contractions at -60 and -1800.s-1. Results: In the injured limb of the injured group, compared to the contralateral uninjured limb rate of torque development and impulse was lower during -600.s-1 eccentric contractions at 50 (RTD, p=0.008; IMP, p=0.005) and 100ms (RTD, p=0.001; IMP p<0.001) after the onset of contraction. There was also a non-significant trend for rate of torque development during -1800.s-1 to be lower 100ms after onset of contraction (p=0.064). Biceps femoris long head muscle activation was lower at 100ms at both contraction speeds (-600.s-1, p=0.009; -1800.s-1, p=0.009). Medial hamstring activation did not differ between limbs in the injured group. Comparisons in the uninjured group showed no significant between limbs difference for any variables. Conclusion: Previously injured hamstrings displayed lower rate of torque development and impulse during eccentric contraction. Lower muscle activation was confined to the biceps femoris long head. Regardless of whether these deficits are the cause of or the result of injury, these findings have important implications for hamstring strain injury and re-injury and suggest greater attention be given to neural function of the knee flexors.
Resumo:
Objectives The purpose of the study was to establish regression equations that could be used to predict muscle thickness and pennation angle at different intensities from electromyography (EMG) based measures of muscle activation during isometric contractions. Design Cross-sectional study. Methods Simultaneous ultrasonography and EMG were used to measure pennation angle, muscle thickness and muscle activity of the rectus femoris and vastus lateralis muscles, respectively, during graded isometric knee extension contractions performed on a Cybex dynamometer. Data form fifteen male soccer players were collected in increments of approximately 25% intensity of the maximum voluntary contraction (MVC) ranging from rest to MVC. Results There was a significant correlation (P < 0.05) between ultrasound predictors and EMG measures for the muscle thickness of rectus femoris with an R2 value of 0.68. There was no significant correlation (P > 0.05) between ultrasound pennation angle for the vastus lateralis predictors for EMG muscle activity with an R2 value of 0.40. Conclusions The regression equations can be used to characterise muscle thickness more accurately and to determine how it changes with contraction intensity, this provides improved estimates of muscle force when using musculoskeletal models.
Resumo:
In an attempt to preserve proximal femoral bone stock and achieve a better fit in smaller femora, especially in the Asian population, several new shorter stem designs have become available. We investigated the torque to periprosthetic femoral fracture of the Exeter short stem compared with the conventional length Exeter stem in a Sawbone model. 42 stems; 21 shorter and 21 conventional stems both with three different offsets were cemented in a composite Sawbone model and torqued to fracture. Results showed that Sawbone femurs break at a statistically significantly lower torque to failure with a shorter compared to conventional length Exeter stem of the same offset. Both standard and short stem designs are safe to use as the torque to failure is 7-10 times that seen in activities of daily living.
Resumo:
A multiscale approach that bridges the biophysics of the actin molecules at nanoscale and the biomechanics of actin filament at microscale level is developed and used to evaluate the mechanical performances of actin filament bundles. In order to investigate the contractile properties of skeletal muscle which is induced by the protein motor of myosin, a molecular model is proposed in the prediction of the dynamic behaviors of skeletal muscle based on classic sliding filament model. Randomly distributed myosin motors are applied on a 2.2 μm long sarcomere, whose principal components include actin and myosin filaments. It can be found that, the more myosin motors on the sarcomere, the faster the sarcomere contracts. The result demonstrates that the sarcomere shortening speed cannot increase infinitely by the modulation of myosin, thus providing insight into the self-protective properties of skeletal muscles. This molecular filament sliding model provides a theoretical way to evaluate the properties of skeletal muscles, and contributes to the understandings of the molecular mechanisms in the physiological phenomenon of muscular contraction.
Resumo:
This paper presents the modeling and motion-sensorless direct torque and flux control of a novel dual-airgap axial-flux permanent-magnet machine optimized for use in flywheel energy storage system (FESS) applications. Independent closed-loop torque and stator flux regulation are performed in the stator flux ( x-y) reference frame via two PI controllers. This facilitates fast torque dynamics, which is critical as far as energy charging/discharging in the FESS is concerned. As FESS applications demand high-speed operation, a new field-weakening algorithm is proposed in this paper. Flux weakening is achieved autonomously once the y-axis voltage exceeds the available inverter voltage. An inherently speed sensorless stator flux observer immune to stator resistance variations and dc-offset effects is also proposed for accurate flux and speed estimation. The proposed observer eliminates the rotary encoder, which in turn reduces the overall weight and cost of the system while improving its reliability. The effectiveness of the proposed control scheme has been verified by simulations and experiments on a machine prototype.
Resumo:
This paper presents an improved field weakening algorithm for synchronous reluctance motor (RSMs) drives. The proposed algorithm is robust to the variations in the machine d- and q-axes inductances. The transition between the maximum torque per ampere (MTPA), current and voltage limits as well as the maximum torque per flux (MTPF) trajectories is smooth. The proposed technique is combined with the direct torque control method to attain a high performance drive in the field weakening region. Simulation and experimental results are supplemented to verify the effectiveness of the proposed approach.
Resumo:
Objectives To assess the feasibility and efficacy of delivering Pilates exercises for resistance training to breast cancer survivors using the MVe Fitness Chair™. Design Pilot randomized controlled trial. Methods Twenty-six female breast cancer survivors were randomized to use the MVe Fitness Chair™ (n = 8), traditional resistance training (n = 8), or a control group (no exercise) (CO) (n = 10). The MVe Fitness Chair™ and traditional resistance training groups completed 8 weeks of exercise. Muscular endurance was assessed pre and post-test for comparisons within and between groups using push ups, curl ups, and the Dynamic Muscular Endurance Test Battery for Cancer Patients of Various Ages. Results Feasibility of the MVe Fitness Chair™ was good, evidenced by over 80% adherence for both exercise groups and positive narrative feedback. Significant improvements in muscular endurance were observed in the MVe Fitness Chair™ (p < 0.002) and traditional resistance training groups (p < 0.001), but there were no differences in improvement between the MVe Fitness Chair™ and traditional resistance training groups (p < 0.711) indicating that Pilates and traditional resistance training may be equally effective at improving muscular endurance in this population. Conclusions The MVe Fitness Chair™ is feasible for use in breast cancer survivors. It appears to promote similar improvements in muscular endurance when compared to traditional resistance training, but has several advantages over traditional resistance training, including cost, logistics, enjoyment, and ease of learning.
Resumo:
Ultra-endurance exercise, such as an Ironman triathlon, induces muscle damage and a systemic inflammatory response. As the resolution of recovery in these parameters is poorly documented, we investigated indices of muscle damage and systemic inflammation in response to an Ironman triathlon and monitored these parameters 19 days into recovery. Blood was sampled from 42 well-trained male triathletes 2 days before, immediately after, and 1, 5 and 19 days after an Ironman triathlon. Blood samples were analyzed for hematological profile, and plasma values of myeloperoxidase (MPO), polymorphonuclear (PMN) elastase, cortisol, testosterone, creatine kinase (CK) activity, myoglobin, interleukin (IL)-6, IL-10 and high-sensitive C-reactive protein (hs-CRP). Immediately post-race there were significant (P < 0.001) increases in total leukocyte counts, MPO, PMN elastase, cortisol, CK activity, myoglobin, IL-6, IL-10 and hs-CRP, while testosterone significantly (P < 0.001) decreased compared to prerace. With the exception of cortisol, which decreased below prerace values (P < 0.001), these alterations persisted 1 day post-race (P < 0.001; P < 0.01 for IL-10). Five days post-race CK activity, myoglobin, IL-6 and hs-CRP had decreased, but were still significantly (P < 0.001) elevated. Nineteen days post-race most parameters had returned to prerace values, except for MPO and PMN elastase, which had both significantly (P < 0.001) decreased below prerace concentrations, and myoglobin and hs-CRP, which were slightly, but significantly higher than prerace. Furthermore, significant relationships between leukocyte dynamics, cortisol, markers of muscle damage, cytokines and hs-CRP after the Ironman triathlon were noted. This study indicates that the pronounced initial systemic inflammatory response induced by an Ironman triathlon declines rapidly. However, a low-grade systemic inflammation persisted until at least 5 days post-race, possibly reflecting incomplete muscle recovery.