124 resultados para Murihiku Terrane


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Variscan structures of the Caucasus region are still quite difficult to decipher, they certainly deserved some in depth investigations in the future. Thus, it is right to question any paleogeographic models proposed in that area, as made by D.A. Ruban. We present here the arguments that we used to decide on the distribution of the terranes in that region. The Transcaucasus massif is regarded as pertaining to the Galatian super-terrane, whereas, the Great Caucasus terrane belongs to the Hanseatic ribbon terrane. The latter was a part of Hunia, detached from Laurussia in the Devonian.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract The Northwestern edge of the modern Caribbean Plate, located in central Middle America (S-Guatemala to N-Costa Rica), is characterized by a puzzle of oceanic and continental terranes that belonged originally to the Pacific façade of North America. South of the Motagua Fault Zone, the actual northern strike slip boundary of the Caribbean Plate, three continental slivers (Copán, Chortis s. str. and Patuca) are sandwiched between two complex suture zones that contain HP/LT mafic and ultramafic oceanic rocks: The Motagua Mélanges to the North, extensively studied in the last ten years and the' newly defined Mesquito Composite Oceanic Terrane (MCOT) to the South. No modem geological data were available for the oceanic terrane located in the southern part of the so called continental "Chortis Block". Classically, the southern limit of this block with the Caribbean Large Igneous Province (CLIP) was placed at a hypothetical fault line connecting the main E-W fault in the Santa Elena Peninsula (N-Costa Rica) with the Hess Escarpment. However, our study in eastern Nicaragua and northwestern Costa Rica evidences an extensive assemblage of oceanic upper mantle and crustal rocks outcropping between the Chortis/Patuca continental blocks and the CLIP. They comprise collided and accreted exotic terranes of Pacific origin recording a polyphased tectonic history. We distinguish: 1- The MCOT that comprises a Late Triassic to Early Cretaceous puzzle of oceanic crust and arc-derived rocks set in a serpentinite matrix, and 2- The Manzanillo and Nicoya Terranes that are made of Cretaceous plateau-like rocks associated with oceanic sediments older than the CLIP. This study has been focused on the rocks of the MCOT. The MCOT comprises the southern half of the former "Chortis Block" and is defined by 4 comer localities characterized by ultramafic and mafic oceanic rocks of Late Triassic, Jurassic and Early Cretaceous age: 1- The Siuna Serpentinite Mélange (NE-Nicaragua), 2- The El Castillo Mélange (Nicaragua/Costa Rica border), 3- DSDP Legs 67 and 84 (Guatemala fore-arc basin), and 4- The Santa Elena Peridiotite (NW-Costa Rica). The Siuna Serpentinite Mélange (SSM) is a HP/LT subduction zone mélange set in a serpentinite matrix that contains oceanic crust and arc-related greenschist to blueschist/eclogite facies metamafic and metasedimentary blocks. Middle Jurassic (Bajocian-Bathonian) radiolarites are found in original sedimentary contact with arc-derived greenstones. Late Jurassic black detrital chert possibly formed in a marginal (fore-arc?) basin shortly before subduction. A phengite 40Ar/39Ar -cooling age dates the exhumation of the high pressure rocks as 139 Ma. The El Castillo Mélange (ECM) is composed of serpentinite matrix with OIB metabasalts and Late Triassic (Rhaetian) red and green radiolarite blocks. Recent studies of the DSDP Legs 67/84 show that the Guatemala/Nicaragua fore-arc basin is composed of a pile of ultramafic, mafic (OIB-like) and arc related rocks with ages ranging from Late Triassic to Campanian. Finally, the Santa Elena peridiotites that mark the limit of the MCOT with the Manzanillo/Nicoya Terranes and correspond to an association of ultramafic rocks that comprise peridiotites, dunites and chromites of abyssal and fore-arc origin. The SSM is the result of a collision between a Middle Jurassic island arc and the Patuca Terrane, a fragment of the Western N-American active continental margin. The Siuna Mélange (SSM) and the South Montagna Mélange share common characteristics with the Pacific N-American suture zone (E-Franciscan and Vizcaino mélanges), in particular, the Mesozoic ages of HP/LT metamorphic and the arc-derived blocks. For us, these mélanges imply an originally continuous, but slightly diachronous suture that affected the entire W-American active margin. It may imply the arrival and collision of an exotic intraoceanic arc (Guerrero-Phoenix) related to the origin of the Pacific Plate that initiated as a back arc basin of this arc. The present disposition of the fragments of this suture zone is the result of a northward shift of the active left-lateral strike slip motion between the N-American and the Caribbean Plates. Résumé Le coin nord-ouest de la Plaque Caraïbe moderne se trouve en Amérique Centrale, entre le sud du Guatemala et le nord du Costa Rica. Cette région est composée d'un puzzle de terrains océaniques et continentaux dont les origines se situent sur la façade pacifique de l'Amérique du Nord. Au sud de la faille de Motagua, la limite septentrionale actuelle, décrochante, de la Plaque Caraïbe, se trouvent 3 copeaux continentaux (Copàn, Chortis s. str. et Patuca) coincés entre deux zones de suture complexes à roches mafiques et ultramafiques qui ont subi un métamorphisme de haute pression/basse température (HP/LT). Il s'agit des Mélanges de Motagua au nord, largement étudiés ces dernières années, et du Mesquito Composite Oceanic Terrane (MCOT), récemment défini par nous, au sud. En vue de l'absence de données géologiques modernes concernant les terrains océaniques qui se trouvent dans la partie sud du "Chortis Block" considérée comme continentale, nous avons dédié cette étude à cette région. Classiquement, la limite méridionale entre le "Chortis Block" et la "Caribbean Large Igneous Province" (CLIP) a été associée à une faille hypothétique reliant la faille E-W de Santa Elena (nord du Costa Rica) à l'Escarpement de Hess. Notre étude au Nicaragua oriental et au Costa Rica nord-occidental a révélé l'existence de larges terrains composés d'assemblages de roches mantéliques et océaniques qui se placent entre les blocs continentaux Chortis/Patuca et le CLIP. Ces assemblages révèlent des terrains collisionnés et accrétés d'origine pacifique enregistrant une histoire tectonique polyphasée. Nous distinguons: 1- Le MCOT, un puzzle de roches océaniques d'arc d'âge Triassique supérieur au Crétacée inférieur, 2- Les terrains de Manzanillo et de Nicoya, des morceaux de plateaux océaniques associés à des sédiments océaniques plus âgés que le CLIP. Cette étude se focalisera sur les roches du MCOT. Le MCOT occupe la moitié sud de l'ancien "Chortis Block" et peut se définir par 4 localités de référence qui montrent des roches mafiques et ultramafiques océaniques d'âges compris entre le Trias supérieur et le Crétacée inférieur. 1- Le Siuna Serpentinite Mélange (NE-Nicaragua), 2- Le El Castillo Mélange (Nicaragua/Costa Rica border), 3- Le DSDP Legs 67/84 (Guatemala fore-arc basin) et 4- La Santa Elena Peridiotite (nord-ouest du Costa Rica). Le Siuna Serpentinite Mélange (SSM) est un mélange de subduction HP/BT dans une matrice de serpentinite. On y trouve des éléments de croûte océanique et d'arc insulaire en faciès de schistes verts et schistes bleus. Des radiolarites du Jurassique moyen se trouvent en contact sédimentaire sur des roches vertes d'arc. En revanche, des cherts noirs détritiques datent du Jurassique supérieur et sont probablement issus d'un bassin marginal (fore-arc ?) peu avant leur subduction, car un âge 40Ar/39Ar de refroidissement des phengites date l'exhumation des roches de haute pression à 139 Ma. Le Mélange d'El Castillo (ECM) est constitué d'une matrice serpentinitique et contient des blocs de metabasaltes OIB et des blocs de radiolarites du Trias terminal. Des études récentes ont repris les roches forées lors des DSDP Legs 67 et 84 et montrent que le soubassement du bassin d'avant-arc du Guatemala-Nicaragua est composé de roches ultramafiques et mafiques (OIB et arc), dont les âges isotopiques vont du Trias au Crétacé supérieur. Finalement, les péridiotites de Santa Elena forment la limite sud du MCOT par rapport aux terrains de Manzanillo et Nicoya. Elles contiennent des serpentinites et localement des dunites et chromites à affinité abyssale et de fore-arc. Le SSM témoigne d'une collision entre un arc insulaire d'âge Jurassique moyen et le Patuca Terrane, un fragment de la marge active nord-américaine. Le SSM et le South Motagua Mélange ont des caractéristiques en commun avec les zones de suture de la façade pacifique de l'Amérique du nord (E-Franciscan et Vizcaino mélanges), notamment les âges Mésozoïques du métamorphisme HP/BT et les blocs de roches d'arc. Ce fait nous conduit à penser qu'il s'agit d'une grande zone de suture qui était à l'origine continue sur toute la marge ouest-américaine, mais légèrement diachrone. Cette suture implique l'arrivée et la collision d'un arc intraocéanique exotique (Guerrero-Phoenix) qui est à l'origine de la Plaque Pacifique qui s'ouvrait en back arc par rapport à celui-ci. La disposition actuelle des fragments de cette suture est due à la migration vers le nord du décrochement actif senestre entre la Plaque nord-américaine et la Plaque Caraïbe. K. Flores, 2009 Mesozoic oceanic terranes of southern central America Résumé Grand Public La présente thèse est le résultat de travaux de terrain effectués de 2005 à 2008 au nord-est et au sud du Nicaragua et au nord du Costa Rica, en Amérique Centrale, des analyses pétrologiques et géochimiques en laboratoire ainsi que de la modélisation de l'évolution géodynamique. La région étudiée se situe en bordure nord - ouest de la Plaque Caraïbe moderne. Dans la majorité des publications récentes cette région est représentée comme un vaste bloc continental (le "Bloc Chortis") qui serait limité, (i) au nord, par la faille décrochante de Motagua, la limite actuelle entre la Plaque Nord-Américaine et la Plaque Caraïbe, et (ii) au sud, par une suture hypothétique qui se trouverait aux confins entre le Nicaragua et le Costa Rica. La région du Costa Rica a été considérée presque entièrement comme une partie du Plateau Caraïbe ("Caribbean Large Igneous Province" (CLIP)). L'étude détaillée des affleurements nous a permis de mettre en évidence : - Au nord-est du Nicaragua (Siuna) : Des roches océaniques datées du Jurassique moyen, grâce aux faunes à radiolaires qui ont été extraites des radiolarites rouges. Ces roches ont subi un métamorphisme de haute pression typique des zones de collision. L'étude radio-isotopique Ar/Ar a permis de dater la collision du Crétacé basal (139 Ma). - Au sud du Nicaragua : Des roches océaniques d'âge Trias terminal (200 millions d'années), également datées à l'aide de faunes à radiolaires. Il s'agit actuellement des roches océaniques les plus anciennes connues de l'Amérique Centrale. - L'étude géochimique et les âges des fossiles démontrent que le tiers septentrional du Costa Rica possède un soubassement construit d'au moins deux terrains (Nicoya et Manzanillo), qui ont des caractéristiques de Plateau océanique (Nicoya) et d'arc volcanique du Crétacé moyen (Manzanillo). Ces deux terrains sont plus anciens que le CLIP. En conclusion, nous constatons que la région étudiée est constituée d'un puzzle de 3 blocs continentaux et d'un vaste terrain océanique composite que nous appelons Mesquito Composite Oceanic Terrane (MCOT). En plus, nous définissons les terrains de Nicoya et de Manzanillo comme plus âgés et distincts du CLIP. Le MCOT est caractérisé par la présence de roches du manteau supérieur (les serpentinites) et de la croûte océanique, ainsi que des morceaux d'arcs, d'âge allant du Trias supérieur au Crétacé. Ce terrain est comparable à d'autres zones de suture de la façade pacifique de l'Amérique du nord, notamment en ce qui concerne les âges Mésozoïques, le métamorphisme de haute pression et l'association de roches mantéliques et crustales océaniques. Ce fait nous conduit à penser qu'il s'agit d'une grande zone de suture qui était à l'origine continue sur toute la marge ouest-américaine. Cette suture implique l'arrivée et la collision d'un arc infra-océanique exotique qui serait à l'origine de la Plaque Pacifique qui se serait ouverte en bassin d'arrière arc par rapport à celui-ci. La disposition actuelle des fragments de cette suture est due à la migration vers le nord du décrochement actif senestre entre la Plaque nord-américaine et la Plaque Caraïbe.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New reconstructions of the Western Alps from late Early Jurassic till early Tertiary are proposed. These reconstructions use deep lithospheric data gathered through recent seismic surveys and tomographic studies carried out in the Alps. The present day position, under the Po plain, of the southern limit of the European plate (fig. 1), allows to define the former geometry of the Brianconnais peninsula. The Brianconnais domain is regarded as an exotic terrane formerly belonging to the European margin until Late Jurassic, then transported eastward during the drift of Iberia (fig. 5). Therefore, on a present day Western Alps cross section, a duplication of the European continental margin can be recognized (fig. 10). Stratigraphic and sedimentological data along a zone linking the Pyrenean fracture zone to the Brianconnais, can be related to a rifting event starting in Oxfordian time. This event is responsible for the Late Jurassic till mid-Cretaceous drift of Iberia opening, first the northern Atlantic, then the Gulf of Biscay. Simultaneously, the drift of the Brianconnais will open the Valais ocean and close the Piemontese ocean. The resulting oblique collision zone between the Brianconnais and the Apulian margin generates HP/LT metamorphism starting in Early Cretaceous. The eastward drift of the Brianconnais peninsula will eventually bring it in front of a more northerly segment of the former European margin. The thrusting of the Brianconnais unto that margin takes place in early Tertiary (fig. 9), following the subduction of the Valais ocean. The present nappe pile results not only from continent/continent frontal collision, but also from important lateral displacement of terranes, the most important one being the Brianconnais. The dilemma of `'en echelon'' oceanic domains in the Alps is an outcome of these translations. A solution is found when considering the opening of a Cretaceous Valais ocean across the European margin, running out eastward into the Piemontese ocean, where the drift is taken up along a former transform fault and compensated by subduction under the Apulian margin (fig. 8). In the Western Alps we are then dealing with two oceans, the Piemontese and the Valaisan and a duplicated European margin. In the Eastern Alps the single Piemontese ocean is cut by newly created oceanic crust. All these elements will be incorporated into the Penninic structural domain which does not represent a former unique paleogeographic area, it is a composite accretionary domain squeezed between Europe and Apulia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The results of a coupled, in situ laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) U-Pb study on zircon and geochemical characterization of the Eastern Cordilleran intrusives of Peru reveal 1.15 Ga of intermittent magmatism along central Western Amazonia, the Earth's oldest active open continental margin. The eastern Peruvian batholiths are volumetrically dominated by plutonism related to the assembly and breakup of Pangea during the Paleozoic-Mesozoic transition. A Carboniferous-Permian (340-285 Ma) continental arc is identified along the regional orogenic strike from the Ecuadorian border (6 degrees S) to the inferred inboard extension of the Arequipa-Antofalla terrane in southern Peru (14 degrees S). Widespread crustal extension and thinning, which affected western Gondwana throughout the Permian and Triassic resulted in the intrusion of the late- to post-tectonic La Merced-San Ramon-type anatectites dated between 275 and 220 Ma, while the emplacement of the southern Cordillera de Carabaya peraluminous granitoids in the Late Triassic to Early Jurassic (220-190 Ma) represents, temporally and regionally, a separate tectonomagmatic event likely related to resuturing of the Arequipa-Antofalla block. Volcano-plutonic complexes and stocks associated with the onset of the present Andean cycle define a compositionally bimodal alkaline suite and cluster between 180 and 170 Ma. A volumetrically minor intrusive pulse of Oligocene age (ca. 30 Ma) is detected near the southwestern Cordilleran border with the Altiplano. Both post-Gondwanide (30-170 Ma), and Precambrian plutonism (691-1123 Ma) are restricted to isolated occurrences spatially comprising less than 15% of the Eastern Cordillera intrusives. Only one remnant of a Late Ordovician intrusive belt is recognized in the Cuzco batholith (446.5 +/- 9.7 Ma) indicating that the Famatinian arc system previously identified in Peru along the north-central Eastern Cordillera and the coastal Arequipa-Antofalla terrane also existed inboard of this parautochthonous crustal fragment. Hitherto unknown occurrences of late Mesoproterozoic and middle Neoproterozoic granitoids from the south-central cordilleran segment define magmatic events at 691 +/- 13 Ma, 751 +/- 8 Ma, 985 +/- 14 Ma, and 1071-1123 +/- 23 Ma that are broadly coeval with the Braziliano and Grenville-Sunsas orogenies, respectively. Our data suggest the existence of a continuous orogenic belt in excess of 3500 km along Western Amazonia during the formation of Rodinia, its ``early'' fragmentation prior to 690 Ma, and support a model of reaccretion of the Paracas-Arequipa-Antofalla terrane to western Gondwana in the Early Ordovician with subsequent detachment of the Paracas segment in form of the Mexican Oaxaquia microcontinent in Middle Ordovician. A tectonomagmatic model involving slab detachment, followed by underplating of cratonic margin by asthenospheric mantle is proposed for the genesis of the volumetrically dominant Late Paleozoic to early Mesozoic Peruvian Cordilleran batholiths.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Paint Lake Deformation Zone (PLDZ), located within the Superior Province of Canada, demarcates a major structural and lithological break between the Onaman-Tashota Terrane to the north and the Beardmore-Geraldton Belt to the south. The PLDZ is an east-west trending lineament, approximately 50 km in length and up to 1 km in width, comprised of an early ductile component termed the Paint Lake Shear Zone and a late brittle component known as the Paint Lake Fault. Structures associated with PLDZ development including S-, C- and C'-fabrics, stretching lineations, slickensides, C-C' intersection lineations, Z-folds and kinkbands indicate that simple shear deformation dominated during a NW-SE compressional event. Movement along the PLDZ was in a dextral sense consisting of an early differential motion with southside- down and a later strike-slip motion. Although the locus of the PLDZ may in part be lithologically controlled, mylonitization which accompanied shear zone development is not dependent on the lithological type. Conglomerate, intermediate and mafic volcanic units exhibit similar mesoscopic and microscopic structures where transected by the PLDZ. Field mapping, supported by thin section analysis, defines five strain domains increasing in intensity of deformation from shear zone boundary to centre. A change in the dominant microstructural deformation mechanism from dislocation creep to diffusion creep is observed with increasing strain during mylonitization. C'-fabric development is temporally associated with this change. A decrease in the angular relationship between C- and C'-fabrics is observed upon attaining maximum strain intensity. Strain profiling of the PLDZ demonstrates the presence of an outer primary strain gradient which exhibits a simple profile and an inner secondary strain gradient which exhibits a more complex profile. Regionally metamorphosed lithologies of lower greenschist facies outside the PLDZ were subjected to retrograde metamorphism during deformation within the PLDZ.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Our current understanding of the tectonic history of the principal Pan-African orogenic belts in southwestern Africa, reaching from the West Congo Belt in the north to the Lufilian/Zambezi, Kaoko, Damara, Gariep and finally the Saldania Belt in the south, is briefly summarized. On that basis, possible links with tectono-stratigraphic units and major structures on the eastern side of the Rio de la Plata Craton are suggested, and a revised geodynamic model for the amalgamation of SW-Gondwana is proposed. The Rio de la Plata and Kalahari Cratons are considered to have become juxtaposed already by the end of the Mesoproterozoic. Early Neoproterozoic rifting led to the fragmentation of the northwestern (in today`s coordinates) Kalahari Craton and the splitting off of several small cratonic blocks. The largest of these ex-Kalahari cratonic fragments is probably the Angola Block. Smaller fragments include the Luis Alves and Curitiba microplates in eastern Brazil, several basement inliers within the Damara Belt, and an elongate fragment off the western margin, named Arachania. The main suture between the Kalahari and the Congo-So Francisco Cratons is suspected to be hidden beneath younger cover between the West Congo Belt and the Lufilian/Zambezi Belts and probably continues westwards via the Cabo Frio Terrane into the Goias magmatic arc along the Brasilia Belt. Many of the rift grabens that separated the various former Kalahari cratonic fragments did not evolve into oceanic basins, such as the Northern Nosib Rift in the Damara Belt and the Gariep rift basin. Following latest Cryogenian/early Ediacaran closure of the Brazilides Ocean between the Rio de la Plata Craton and the westernmost fragment of the Kalahari Craton, the latter, Arachania, became the locus of a more than 1,000-km-long continental magmatic arc, the Cuchilla Dionisio-Pelotas Arc. A correspondingly long back-arc basin (Marmora Basin) on the eastern flank of that arc is recognized, remnants of which are found in the Marmora Terrane-the largest accumulation of oceanic crustal material known from any of the Pan-African orogenic belts in the region. Corresponding foredeep deposits that emerged from the late Ediacaran closure of this back-arc basin are well preserved in the southern areas, i.e. the Punta del Este Terrane, the Marmora Terrane and the Tygerberg Terrane. Further to the north, present erosion levels correspond with much deeper crustal sections and comparable deposits are not preserved anymore. Closure of the Brazilides Ocean, and in consequence of the Marmora back-arc basin, resulted from a change in the Rio de la Plata plate motion when the Iapetus Ocean opened between the latter and Laurentia towards the end of the Ediacaran. Later break-up of Gondwana and opening of the modern South Atlantic would have followed largely along the axis of the Marmora back-arc basin and not along major continental sutures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Borborema Province has three major subprovinces. The northern subprovince lies north of the Patos shear zone and is comprised of Paleoproterozoic cratonic basement with Archean nuclei, plus overlying Neoproterozoic supracrustal rocks and Brasiliano plutonic rocks. The central subprovince occurs between the Patos and Pernambuco shear zones and is mainly comprised of the Zona Transversal. The southern subprovince occurs between the Pernamabuco shear zone and the Sao Francisco craton and is comprised of a tectonic collage of various blocks, terranes, or domains ranging in age from Archean to Neoproterozoic. This report focuses on the Zona Transversal, especially on Brasiliano rocks for which we have the most new information. Paleoproterozoic gneisses with ages of 2.0-2.2 Ga occur discontinuously throughout the Zona Transversal. The Cariris Velhos suite consists of metavolcanic, metasedimentary, and metaplutonic rocks yielding U-Pb zircon ages of 995-960 Ma. This suite is mainly confined to a 100 km wide belt that extends for more than 700 km within the Alto Pajeu terrane. Sm-Nd model ages in metaigneous rocks cluster about 1.3-1.6 Ga, indicating that older crust was involved in genesis of their magmas. Brasiliano supracrustal rocks dominate the Pianco-Alto Brigida terrane, and they probably also constitute significant parts of the Alto Pajeu and Rio Capibaribe terranes. They are only slightly older than early stages of Brasiliano plutonism, with detrital zircon ages at least as young as 620 Ma; most T(DM) ages range from 1.2 to 1.6 Ga. Brasiliano plutons range from ca. 640 to 540 Ma, and their T(DM) ages range from 1.2 to 2.5 Ga. Previous workers have shown significant correlations among U-Pb ages, Sm-Nd model ages, petrology, and geochemistry, and we are able to reinforce and extend these correlations. Stage I plutons formed 640 -610 Ma and have T(DM) ages less than 1.5 Ga. Stage 11 (610-590 Ma) contains few plutons, but coincides with the peak of compressional deformation, metamorphism, and formation of migmatites. Stage III plutons (590 to ca. 575 Ma) have older T(DM) ages (ca. 1.8-2.0 Ga), as do Stage IV plutons (575 to ca. 550 Ma; T(DM) from 1.9 to 2.4 Ga). Stage III plutons formed during the transition from compressional to transcurrent deformation, while Stage IV plutons are mainly post-tectonic. Stage V plutons (550-530 Ma) are commonly undeformed (except along younger shear zones) and have A-type geochemistry. The five stages have distinct geochemical properties, which suggest that the tectonic settings evolved from early, arc-related magma-genesis (Stage I) to within-plate magma-genesis (Stage V), with perhaps some intermediate phases of extensional environments. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Rondonian-San Ignacio Province (1.56-1.30 Ga) is a composite orogen created through successive accretion of arcs, ocean basin closure and final oblique microcontinent-continent collision. The effects of the collision are well preserved mostly in the Paragua Terrane (Bolivia and Mato Grosso regions) and in the Alto Guapore Belt and the Rio Negro-Juruena Province (Rondonia region), considering that the province was affected by later collision-related deformation and metamorphism during the Sunsas Orogeny (1.25-1.00 Ga). The Rondonian-San Ignacio Province comprises: (1) the Jauru Terrane (1.78-1.42 Ga) that hosts Paleoproterozoic basement (1.78-1.72 Ga), and the Cachoeirinha (1.56-1.52 Ga) and the Santa Helena (1.48-1.42 Ga) accretionary orogens, both developed in an Andean-type magmatic arc; (2) the Paragua Terrane (1.74-1.32 Ga) that hosts pre-San Ignacio units (>1640 Ma: Chiquitania Gneiss Complex, San Ignacio Schist Group and Lomas Manechis Granulitic Complex) and the Pensamiento Granitoid Complex (1.37-1.34 Ga) developed in an Andean-type magmatic arc; (3) the Rio Alegre Terrane (1.51-1.38 Ga) that includes units generated in a mid-ocean ridge and an intra-oceanic magmatic arc environments; and (4) the Alto Guapore Belt (<1.42-1.34 Ga) that hosts units developed in passive marginal basin and intra-oceanic arc settings. The collisional stage (1.34-1.32 Ga) is characterized by deformation, high-grade metamorphism, and partial melting during the metamorphic peak, which affected primarily the Chiquitania Gneiss Complex and Lomas Manechis Granulitic Complex in the Paragua Terrane, and the Colorado Complex and the Nova Mamore Metamorphic Suite in the Alto Guapore Belt. The Paragua Block is here considered as a crustal fragment probably displaced from its Rio Negro-Juruena crustal counterpart between 1.50 and 1.40 Ga. This period is characterized by extensive A-type and intra-plate granite magmatism represented by the Rio Crespo Intrusive Suite (ca. 1.50 Ga), Santo Antonio Intrusive Suite (1.40-1.36 Ga), and the Teotonio Intrusive Suite (1.38 Ga). Magmatism of these types also occur at the end of the Rondonian-San Ignacio Orogeny, and are represented by the Alto Candeias Intrusive Suite (1.34-1.36 Ga), and the Sao Lourenco-Caripunas Intrusive Suite (1.31-1.30 Ga). The cratonization of the province occurred between 1.30 and 1.25 Ga. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Borborema Province in northeastern South America is a typical Brasiliano-Pan-African branching system of Neoproterozoic orogens that forms part of the Western Gondwana assembly. The province is positioned between the Sao Luis-West Africa craton to the north and the Sao Francisco (Congo-Kasai) craton to the south. For this province the main characteristics are (a) its subdivision into five major tectonic domains, bounded mostly by long shear zones, as follows: Medio Coreau, Ceara Central, Rio Grande do Norte, Transversal, and Southern; (b) the alternation of supracrustal belts with reworked basement inliers (Archean nuclei + Paleoproterozoic belts); and (c) the diversity of granitic plutonism, from Neoproterozoic to Early Cambrian ages, that affect supracrustal rocks as well as basement inliers. Recently, orogenic rock assemblages of early Tonian (1000-920 Ma) orogenic evolution have been recognized, which are restricted to the Transversal and Southern domains of the Province. Within the Transversal Zone, the Alto Pajeu terrane locally includes some remnants of oceanic crust along with island arc and continental arc rock assemblages, but the dominant supracrustal rocks are mature and immature pelitic metasedimentary and metavolcaniclastic rocks. Contiguous and parallel to the Alto Pajeu terrane, the Riacho Gravata subterrane consists mainly of low-grade metamorphic successions of metarhythmites, some of which are clearly turbiditic in origin, metaconglomerates, and sporadic marbles, along with interbedded metarhyolitic and metadacitic volcanic or metavolcaniclastic rocks. Both terrane and subterrane are cut by syn-contractional intrusive sheets of dominantly peraluminous high-K calc-alkaline, granititic to granodioritic metaplutonic rocks. The geochemical patterns of both supracrustal and intrusive rocks show similarities with associations of mature continental arc volcano-sedimentary sequences, but some subordinate intra-plate characteristics are also found. In both the Alto Pajeu and Riacho Gravata terranes, TIMS and SHRIMP U-Pb isotopic data from zircons from both metavolcanic and metaplutonic rocks yield ages between 1.0 and 0.92 Ga, which define the time span for an event of orogenic character, the Cariris Velhos event. Less extensive occurrences of rocks of Cariris Velhos age are recognized mainly in the southernmost domains of the Province, as for example in the Polo Redondo-Maranco terrane, where arc-affinity migmatite-granitic and meta-volcano-sedimentary rocks show U-Pb ages (SHRIMP data) around 0.98-0.97 Ga. For all these domains, Sm-Nd data exhibit Tom model ages between 1.9 and 1.1 Ga with corresponding slightly negative to slightly positive epsilon(Nd)(t) values. These domains, along with the Borborema Province as a whole, were significantly affected by tectonic and magmatic events of the Brasiliano Cycle (0.7-0.5 Ga), so that it is possible that there are some other early Tonian rock assemblages which were completely masked and hidden by these later Brasiliano events. Cariris Velhos processes are younger than the majority of orogenic systems at the end of Mesoproterozoic Era and beginning of Neoproterozoic throughout the world, e.g. Irumide belt, Kibaride belt and Namaqua-Natal belt, and considerably younger than those of the youngest orogenic process (Ottawan) in the Grenvillian System. Therefore, they were probably not associated with the proposed assembly of Rodinia. We suggest, instead, that Cariris Velhos magmatism and tectonism could have been related to a continental margin magmatic arc, with possible back-arc associations, and that this margin may have been a short-lived (<100 m.y.) leading edge of the newly assembled Rodinia supercontinent. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Guarguaraz Complex, in western Argentina, comprises a metasedimentary assemblage, associated with mafic sills and ultramafic bodies intruded by basaltic dikes, which are interpreted as Ordovician dismembered ophiolites. Two kinds of dikes are recognized, a group associated with the metasediments and the other ophiolite-related. Both have N-MORB signatures, with epsilon(Nd) between +3.5 and +8.2, indicating a depleted source, and Grenville model ages between 0.99 and 1.62 Ga. A whole-rock Sm-Nd isochron yielded an age of 655 +/- 76 Ma for these mafic rocks, which is compatible with cianobacteria and acritarchae recognized in the clastic metasedimentary platform sequences, that indicate a Neoproterozoic (Vendian)-Cambrian age of deposition. The Guarguaraz metasedimentary-ophiolitic complex represents, therefore, a remnant of an oceanic basin developed to the west of the Grenville-aged Cuyania terrane during the Neoproterozoic. The southernmost extension of these metasedimentary sequences in Cordon del Portillo might represent part of this platform and not fragments of the Chilenia terrane. An extensional event related to the fragmentation of Rodinia is represented by the mafic and ultramafic rocks. The Devonian docking of Chilenia emplaced remnants of ocean floor and slices of the Cuyania terrane (Las Yaretas Gneisses) in tectonic contact with the Neoproterozoic metasediments, marking the Devonian western border of Gondwana. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Early Paleozoic geodynamic evolution in SW Iberia is believed to have been dominated by the opening of the Rheic Ocean. The Rheic Ocean is generally accepted to have resulted from the drift of peri-Gondwanan terranes such as Avalonia from the northern margin of Gondwana during Late Cambrian-Early Ordovician times. The closure of the Rheic Ocean was the final result of a continent-continent collision between Gondwana and Laurussia that produced the Variscan orogen. The Ossa-Morena Zone is a peri-Gondwana terrane, which preserves spread fragments of ophiolites - the Internal Ossa-Morena Zones Ophiolite Sequences (IOMZOS). The final patchwork of the IOMZOS shows a complete oceanic lithospheric sequence with geochemical characteristics similar to the ocean-floor basalts, without any orogenic fingerprint and/or crustal contamination. The IOMZOS were obducted and imbricated with high pressure lithologies. Based on structural, petrological and whole-rock geochemical data, the authors argue that the IOMZOS represent fragments of the oceanic lithosphere from the Rheic Ocean. Zircon SHRIMP U-Pb geochronological data on metagabbros point to an age of ca. 480 Ma for IOMZOS, providing evidence of a well-developed ocean in SW Iberia during this period, reinforcing the interpretation of the Rheic Ocean as a wide ocean among the peri-Gondwanan terranes during Early Ordovician times.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Jaguarao stratoid dacites (Rio Grande do Sul, Brazil) are limited in areal extent, are comprised of about 3.2 km(3) of preserved erupted material, and outcrop only in areas of the region underlain by mylonitic and ultramylonitic rocks. They are S-type volcanic rocks containing cordierite, orthopyroxene, plagioclase, and ilmenite as liquidus phases, and partially melted granite, gneiss, and migmatite enclaves that are very similar to the Precambrian basement rocks. The Jaguarao lavas have distinct geochemical signatures and Sr-Nd isotopes with respect to other volcanic rocks of the region. Available geochronological data for Jaguarao dacites range between 157 +/- 5 Ma and 139.6 +/- 7.4 Ma. Considering the errors, the younger ages obtained for Jaguarao lavas overlap the 138-128 Ma age of rocks of the Serra Geral Group, and thus indicate that the dacites were erupted prior to the break-up of Gondwana in this region. Petrographic, mineralogical, and petrochemical data, as well as the tectonic context of the Jaguarao lavas, suggest that magma genesis was linked, at least in part, to friction melts. The dacitic magma was generated by partial melting reactions involving biotite breakdown in a dominantly quartz-feldspathic source terrane, leaving a granulite facies residue in subsurface. These melts were probably generated as a consequence of crustal thinning linked to simple shear extension just prior to Gondwana break-up and rifting of the southern Atlantic Ocean. (C) 2009 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The 590-580 Ma Itu Granite Province (IGP) is a roughly linear belt of post-orogenic granite plutons similar to 60 km wide extending for some 350 km along the southern edge of the Apia-Guaxupe Terrane in southeastern Brazil. Typical components are subalkaline A-type granites (some with rapakivi texture) that crystallized at varied, but mostly strongly oxidizing conditions, and contrast with a coeval association of also oxidized high-K calc-alkaline granites in terms of major (e. g., lower Ca/Fe) and trace elements (higher Nb, Y, Zr). Mantle-derived magmas (such as those forming the LILE-rich Piracaia Monzodiorite, with epsilon(Nd(t)) = -7 to -10, (87)Sr/(86)Sr((t)) = 0.7045-0.7055) are inferred to derive from enriched subcontinental lithosphere modified during previous subduction, and may have played a role in the generation of the A-type granites, adding melts or fluids or both to the lower crust from which the latter were generated. The IGP is interpreted as a reflection of crust uplift and increased heat flux during ascent of hot, less dense asthenosphere after continental collision, probably reflecting breakoff of an oceanic slab coeval to the right-lateral accretion of a terrane related to the Mantiqueira Orogenic System.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report 6 K-Ar ages and paleomagnetic data from 28 sites collected in Jurassic, Lower Cretaceous and Paleocene rocks of the Santa Marta massif, to test previous hypothesis of rotations and translations of this massif, whose rock assemblage differs from other basement-cored ranges adjacent to the Guyana margin. Three magnetic components were identified in this study. A first component has a direction parallel to the present magnetic field and was uncovered in all units (D 352, I = 25.6, k = 57.35, a95 = 5.3, N = 12). A second component was isolated in Cretaceous limestone and Jurassic volcaniclastic rocks (D = 8.8, I = 8.3, k = 24.71, a95 = 13.7, N = 6), and it was interpreted as of Early Cretaceous age. In Jurassic sites with this component, Early Cretaceous K-Ar ages obtained from this and previous studies are interpreted as reset ages. The third component was uncovered in eight sites of Jurassic volcaniclastic rocks, and its direction indicates negative shallow to moderate inclinations and northeastward declinations. K-Ar ages in these sites are of Early (196.5 +/- 4.9 Ma) to early Late Jurassic age (156.6 +/- 8.9 Ma). Due to local structural complexity and too few Cretaceous outcrops to perform a reliable unconformity test, we only used two sites with (1) K-Ar ages, (2) less structural complexity, and (3) reliable structural data for Jurassic and Cretaceous rocks. The mean direction of the Jurassic component is (D = 20.4, I = -18.2, k = 46.9, a95 = 5.1, n = 18 specimens from two sites). These paleomagnetic data support previous models of northward along-margin translations of Grenvillian-cored massifs. Additionally, clockwise vertical-axis rotation of this massif, with respect to the stable craton, is also documented; the sense of rotation is similar to that proposed for the Perija Range and other ranges of the southern Caribbean margin. More data is needed to confirm the magnitudes of rotations and translations. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The main Precambrian tectonic units of Uruguay include the Piedra Alta tectonostratigraphic terrane (PATT) and Nico Perez tectonostratigraphic terrane (NPTT), separated by the Sarandi del Yi high-strain zone. Both terranes are well exposed in the Rio de La Plata craton (RPC). Although these tectonic units are geographically small, they record a wide span of geologic time. Therefore improved geological knowledge of this area provides a fuller understanding of the evolution of the core of South America. The PATT is constituted by low-to medium-grade metamorphic belts (ca. 2.1 Ga); its petrotectonic associations such as metavolcanic units, conglomerates, banded iron formations, and turbiditic deposits suggest a back-arc or a trench-basin setting. Also in the PATT, a late to post-orogenic, arc-related layered mafic complex (2.3-1.9 Ga), followed by A-type granites (2.08 Ga), and finally a taphrogenic mafic dike swarm (1.78 Ga) occur. The less thoroughly studied NPTT consists of Palaeoproterozoic high-grade metamorphic sequences (ca. 2.2 Ga), mylonites and postorogenic and rapakivi granites (1.75 Ga). The Brasiliano-Pan African orogeny affected this terrane. Neoproterozoic cover occurs in both tectonostratigraphic terranes, but is more developed in the NPTT. Over the past 15 years, new isotopic studies have improved our recognition of different tectonic events and associated processes, such as reactivation of shear zones and fluids circulation. Transamazonian and Statherian tectonic events were recognized in the RPC. Based on magmatism, deformation, basin development and metamorphism, we propose a scheme for the Precambrian tectonic evolution of Uruguay, which is summarized in the first Palaeoproterozoic tectonic map of the Rio de La Plata craton.