990 resultados para Motor-unit Synchronization
Resumo:
Abstract Background Children have been shown to have higher lactate (LaTh) and ventilatory (VeTh) thresholds than adults, which might be explained by lower levels of type-II motor-unit (MU) recruitment. However, the electromyographic threshold (EMGTh), regarded as indicating the onset of accelerated type-II MU recruitment, has been investigated only in adults. Purpose To compare the relative exercise intensity at which the EMGTh occurs in boys versus men. Methods Participants were 21 men (23.4 ± 4.1 years) and 23 boys (11.1 ± 1.1 years), with similar habitual physical activity and peak oxygen consumption (VO2pk) (49.7 ± 5.5 vs. 50.1 ± 7.4 ml kg−1 min−1, respectively). Ramped cycle ergometry was conducted to volitional exhaustion with surface EMG recorded from the right and left vastus lateralis muscles throughout the test (~10 min). The composite right–left EMG root mean square (EMGRMS) was then calculated per pedal revolution. The EMGTh was then determined as the exercise intensity at the point of least residual sum of squares for any two regression line divisions of the EMGRMS plot. Results EMGTh was detected in 20/21 of the men (95.2 %) and only in 18/23 of the boys (78.3 %). The boys’ EMGTh was significantly higher than the men’s (86.4 ± 9.6 vs. 79.7 ± 10.0 % of peak power output at exhaustion; p < 0.05). The pattern was similar when EMGTh was expressed as percentage of VO2pk. Conclusions The boys’ higher EMGTh suggests delayed and hence lesser utilization of type-II MUs in progressive exercise, compared with men. The boys–men EMGTh differences were of similar magnitude as those shown for LaTh and VeTh, further suggesting a common underlying factor.
Resumo:
Affiliation: Svetlana Shumikhina &Stéphane Molotchnikoff : Département de Sciences Biologiques, Université de Montréal
Resumo:
La sclérose latérale amyotrophique est une maladie neurodégénérative fatale caractérisée par la dégénérescence progressive des neurones moteurs centraux et périphériques. L’un des premiers signes de la maladie est la dénervation de la jonction neuromusculaire (JNM). Les diverses unités motrices (UM) ne présentent toutefois pas la même vulnérabilité à la dénervation dans la SLA: les UM rapide fatigables sont en fait les plus vulnérables et les UM lentes sont les plus résistantes. Alors que des études précédentes ont démontré dans plusieurs modèles animaux de la SLA de nombreuses variations synaptiques, les découvertes ont été contradictoires. Par ailleurs, le type d’UM n’a pas été tenu en compte dans ces divers travaux. Nous avons donc émis l’hypothèse que la présence de la mutation SOD1 pourrait affecter différemment la transmission synaptique des UM, en accord avec leur vulnérabilité sélective. En effectuant des enregistrements électrophysiologiques et de l’immunohistochimie, nous avons étudié la transmission synaptique des différents types d’UM du muscle à contraction rapide Extensor Digitorum Longus (EDL; rapide fatigable (FF) MU) et du muscle à contraction lente Soleus (SOL; lente (S) and rapide fatigue-résistante (FR) MU) de la souris SOD1G37R et leur congénères WT. Pour identifier le type d’UM, un marquage par immunohistochimie des chaînes de myosine a été effectué. Un triple marquage de la JNM a également été effectué pour vérifier son intégrité aux différents stades de la maladie. À P160, dans la période asymptomatique de la maladie, alors qu’aucune altération morphologique n’était présente, l’activité évoquée était déjà altérée différemment en fonction des UM. Les JNMs FF mutantes ont démontré une diminution de l’amplitude des potentiels de plaque motrice (PPM) et du contenu quantique, alors que les JNMs lentes démontraient pratiquement le contraire. Les JNMs FR montraient quant à elles une force synaptique semblable au WT. À P380, dans la période présymtomatique, de nombreuses altérations morphologiques ont été observées dans le muscle EDL, incluant la dénervation complète, l’innervation partielle et les extensions du nerf. La transmission synaptique évoquée des UM FF étaient toujours réduites, de même que la fréquence des potentiels de plaque motrice miniatures. À P425, à l’apparition des premiers symptômes, l’activité synaptique des JNMs S était redevenue normale alors que les JNMs FR ont montré à ce moment une diminution du contenu quantique par rapport au contrôle. De manière surprenante, aucun changement du ratio de facilitation n’a été observé malgré les changements flagrants de la force synaptique. Ces résultats révèlent que la fonction de la JNM est modifiée différemment en fonction de la susceptibilité des UM dans l’ALS. Cette étude fournit des pistes pour une meilleure compréhension de la physiologie de la JNM durant la pathologie qui est cruciale au développement d’une thérapie adéquate ciblant la JNM dans la SLA.
Resumo:
La atrofia multisistémica (AMS) es una enfermedad degenerativa caracterizada por disautonomías y síntomas extrapiramidales. El diagnóstico diferencial con otros parkinsonismos es difícil, por lo cual se requiere una ayuda paraclínica para soportar el diagnóstico clínico. La degeneración del núcleo de Onuf, exclusiva en esta enfermedad, podría sugerir que la presencia de denervación en el esfínter anal podría ser tomada en cuenta como criterio diagnóstico de AMS. Se realizó una revisión sistemática con el fin de determinar la utilidad de la electromiografía de esfínter anal (EMG-EA) en el diagnóstico diferencial de AMS contra otros parkinsonismos. Se incluyeron 17 estudios que analizaron los resultados de EMG-EA en pacientes con AMS. De éstos, 11 de estudios fueron analíticos y compararon pacientes con AMS y otros parkinsonismos. Los 6 estudios restantes fueron descriptivos. La duración de los potenciales de unidad motora (PUM) es significativamente mayor en pacientes con AMS comparados con otros parkinsonismos, y utilizando un punto de corte > 13 ms muestra características operativas que hacen a este parámetro potencialmente útil. Solo un estudio encontró diferencias significativas en el porcentaje de PUM polifásicos, el cual tuvo una sensibilidad y especificidad clínicamente útil cuando el punto de corte es mayor a 60%. El resto de los estudios no reportan diferencias estadísticamente significativas entre parkinsonismos. La literatura disponible apunta a la potencial utilidad de la EMG-EA en el diagnóstico diferencial de la AMS de otros parkinsonismos; sin embargo es necesario conducir más estudios para solventar las limitaciones metodológicas existentes.
Resumo:
This paper investigates the application of the Hilbert spectrum (HS), which is a recent tool for the analysis of nonlinear and nonstationary time-series, to the study of electromyographic (EMG) signals. The HS allows for the visualization of the energy of signals through a joint time-frequency representation. In this work we illustrate the use of the HS in two distinct applications. The first is for feature extraction from EMG signals. Our results showed that the instantaneous mean frequency (IMNF) estimated from the HS is a relevant feature to clinical practice. We found that the median of the IMNF reduces when the force level of the muscle contraction increases. In the second application we investigated the use of the HS for detection of motor unit action potentials (MUAPs). The detection of MUAPs is a basic step in EMG decomposition tools, which provide relevant information about the neuromuscular system through the morphology and firing time of MUAPs. We compared, visually, how MUAP activity is perceived on the HS with visualizations provided by some traditional (e.g. scalogram, spectrogram, Wigner-Ville) time-frequency distributions. Furthermore, an alternative visualization to the HS, for detection of MUAPs, is proposed and compared to a similar approach based on the continuous wavelet transform (CWT). Our results showed that both the proposed technique and the CWT allowed for a clear visualization of MUAP activity on the time-frequency distributions, whereas results obtained with the HS were the most difficult to interpret as they were extremely affected by spurious energy activity. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
A signalling procedure is described involving a connection, via the Internet, between the nervous system of an able-bodied individual and a robotic prosthesis, and between the nervous systems of two able-bodied human subjects. Neural implant technology is used to directly interface each nervous system with a computer. Neural motor unit and sensory receptor recordings are processed real-time and used as the communication basis. This is seen as a first step towards thought communication, in which the neural implants would be positioned in the central nervous systems of two individuals.
Resumo:
In this paper, we investigate the possibility to control a mobile robot via a sensory-motory coupling utilizing diffusion system. For this purpose, we implemented a simulation of the diffusion process of chemicals and the kinematics of the mobile robot. In comparison to the original Braitenberg vehicle in which sensorymotor coupling is tightly realised by hardwiring, our system employs the soft coupling. The mobile robot has two sets of independent sensory-motor unit, two sensors are implemented in front and two motors on each side of the robot. The framework used for the sensory-motor coupling was such that 1) Place two electrodes in the medium 2) Drop a certain amount of Chemical U and V related to the distance to the walls and the intensity of the light 3) Place other two electrodes in the medium 4) Measure the concentration of Chemical U and V to actuate the motors on both sides of the robot. The environment was constructed with four surrounding walls and a light source located at the center. Depending on the design parameters and initial conditions, the robot was able to successfully avoid the wall and light. More interestingly, the diffusion process in the sensory-motor coupling provided the robot with a simple form of memory which would not have been possible with a control framework based on a hard-wired electric circuit.
Resumo:
The detection of physiological signals from the motor system (electromyographic signals) is being utilized in the practice clinic to guide the therapist in a more precise and accurate diagnosis of motor disorders. In this context, the process of decomposition of EMG (electromyographic) signals that includes the identification and classification of MUAP (Motor Unit Action Potential) of a EMG signal, is very important to help the therapist in the evaluation of motor disorders. The EMG decomposition is a complex task due to EMG features depend on the electrode type (needle or surface), its placement related to the muscle, the contraction level and the health of the Neuromuscular System. To date, the majority of researches on EMG decomposition utilize EMG signals acquired by needle electrodes, due to their advantages in processing this type of signal. However, relatively few researches have been conducted using surface EMG signals. Thus, this article aims to contribute to the clinical practice by presenting a technique that permit the decomposition of surface EMG signal via the use of Hidden Markov Models. This process is supported by the use of differential evolution and spectral clustering techniques. The developed system presented coherent results in: (1) identification of the number of Motor Units actives in the EMG signal; (2) presentation of the morphological patterns of MUAPs in the EMG signal; (3) identification of the firing sequence of the Motor Units. The model proposed in this work is an advance in the research area of decomposition of surface EMG signals.
Resumo:
When a muscle contracts it produces vibrations. The origin of these vibrations is not known in detail. The purpose of this study was to determine the mechanism associated with muscle vibrations. Mechanisms which have been proposed in the literature were described as theories (cross-bridge cycling, vibrating string and unfused motor unit theories). Specific predictions were derived from each theory, and tested in three conceptually different studies. In the first study, the influence of recruitment strategies of motor units (MUs) on the vibromyographic (VMG) signal was studied in the in-situ cat soleus using electrical stimulation of the soleus nerve. VMG signals increased with increasing recruitment and decreased with increasing firing rates of MUs. Similar results were obtained for the human rectus femoris (RF) muscle using percutaneous electrical stimulation of the femoral nerve. The influence of MU activation on muscle vibrations was studied in RF by analyzing VMG signals at different percentages (0-100%) of the maximal voluntary contraction (MVC). In our second study, we tested the effects of changing the material properties of the in-situ cat soleus (through muscle length changes) on the VMG signal. The magnitude of the VMG signal was higher for intermediate muscle lengths compared to the longest and the shortest muscle lengths. The decreased magnitude of the VMG signal at the longest and at the shortest muscle lengths was associated with increased passive stiffness and with decreased force transients during unfused contractions, respectively. In the third study, the effect of fatigue on muscle vibrations was studied in human RF and vastus lateralis (VL) musc1es during isometric voluntary contractions at a leveI of 70% MVC. A decrease in the VMG signal magnitude was observed in RF (presumably due to derecruitment of MUs) and an increase in VL (probably related to the enhancement of physiological tremor, which may have occurred predorninantly in a mediolateral direction) with fatigue. The unfused MU theory, which is based on the idea that force transients produced by MUs during unfused tetanic contraction is the mechanism for muscle vibrations, was supported by the results obtained in the above three studies.
Resumo:
Marmosets, Callithrix jacchus, are strictly diurnal animals. The motor activity rhythmicity is generated by the circadian timing system and is modulated by environmental factors, mainly by photic stimuli that compose the light-dark cycle. Photic stimuli can reset the biological oscilators changing activity motor pattern, by a mechanism called entrainment. Otherwise, light can act directly on expressed rhythm, without act on the biological oscillators, promoting the masking. Thus, photic stimuli can synchronize the circadian activity rhythm (CAR) by two distinct mechanisms, acting isolated or at a combined way. Among the elements that can influence photic synchronization, the duration and time of photic exposure is pointed out. If in the natural environment the marmoset can choose places of different intensity illumination and is synchronized to light-dark cycle (LD), how the photic synchronization mechanism can be evaluated in laboratory by light self-selection? With objective to response this question, four adult male marmosets were studied at two conditions: with and without sleeping box. The animals were submitted to a LD cycle (12:12/ 350:2 lx) and constant light (LL: 350 lx) conditions in individual cages with an opaque sleeping box, that permitted the light self-selection. At the room, the temperature was 25.6 ºC (± 0.3 ºC) and humidity was 78.7 (± 5%). The motor activity was recorded at 5 min bins by infrared movement sensors installed at the top of the cages. The motor activity profile was distinct at the two conditions: without the sleeping box protection against light, the activity frequency was higher at CT 11-12 (ANOVA; F(3.23) = 62.27; p < 0.01). Also, the duration of the active phase (α) was prolonged of about 1 h (t test, p < 0.05) and the animals showed a significant delay on the activity onset and offset (t test, p < 0.05) and at the acrophase (confidence intervals of 5%) of CAR. In LL, the light continuous exposure prolonged the active phase and influenced the endogenous expression of the circadian activity rhythm period. From the result analysis, it is concluded that the light self-selection can modify several parameters of CAR in marmosets, allowing the study of the synchronization mechanism using the burrow model. Thus, without sleeping box there was a phase delay between the CAR and LD (entrainment) and an increase of activity near lights off (positive masking). Furthermore, in LL, the light continuous exposure modifies α and the endogenous expression of CAR. It is suggested that the light self-selection might be take into account at investigations that evaluate the biological rhythmicity in marmosets
Resumo:
Quantitative analysis of normal values of motor unit action potentials duration and amplitude of muscles tireoaritenoideus (TA), cricotireoideus (CT), cricoaritenoideus lateralis (CAL), and cricoaritenoideus posterioris (CAP) was performed in 14 adult normal Brazilian volunteers. The recordings were obtained by percutaneously inserted concentric needle electrode. Different motor unit action potentials were manually selected in each muscle for quantitative computerized analysis of duration and amplitude. The mean values for duration and amplitude were respectively 3.8 ms and 413 μV for TA, 4.9 ms and 585 μV for CT, 4.1 ms and 388 μV for CAL and 4.5 ms and 475 μV in CAP. There were no similar reports of normal values of motor unit action potentials in Brazilian subjects.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This thesis proposes an integrated holistic approach to the study of neuromuscular fatigue in order to encompass all the causes and all the consequences underlying the phenomenon. Starting from the metabolic processes occurring at the cellular level, the reader is guided toward the physiological changes at the motorneuron and motor unit level and from this to the more general biomechanical alterations. In Chapter 1 a list of the various definitions for fatigue spanning several contexts has been reported. In Chapter 2, the electrophysiological changes in terms of motor unit behavior and descending neural drive to the muscle have been studied extensively as well as the biomechanical adaptations induced. In Chapter 3 a study based on the observation of temporal features extracted from sEMG signals has been reported leading to the need of a more robust and reliable indicator during fatiguing tasks. Therefore, in Chapter 4, a novel bi-dimensional parameter is proposed. The study on sEMG-based indicators opened a scenario also on neurophysiological mechanisms underlying fatigue. For this purpose, in Chapter 5, a protocol designed for the analysis of motor unit-related parameters during prolonged fatiguing contractions is presented. In particular, two methodologies have been applied to multichannel sEMG recordings of isometric contractions of the Tibialis Anterior muscle: the state-of-the-art technique for sEMG decomposition and a coherence analysis on MU spike trains. The importance of a multi-scale approach has been finally highlighted in the context of the evaluation of cycling performance, where fatigue is one of the limiting factors. In particular, the last chapter of this thesis can be considered as a paradigm: physiological, metabolic, environmental, psychological and biomechanical factors influence the performance of a cyclist and only when all of these are kept together in a novel integrative way it is possible to derive a clear model and make correct assessments.
Resumo:
Cytoplasmic dynein performs multiple cellular tasks but its regulation remains unclear. The dynein heavy chain has a N-terminal stem that binds to other subunits and a C-terminal motor unit that contains six AAA (ATPase associated with cellular activities) domains and a microtubule-binding site located between AAA4 and AAA5. In Aspergillus nidulans, NUDF (a LIS1 homolog) functions in the dynein pathway, and two nudF6 partial suppressors were mapped to the nudA dynein heavy chain locus. Here we identified these two mutations. The nudAL1098F mutation resides in the stem region, and nudAR3086C is in the end of AAA4. These mutations partially suppress the phenotype of nudF deletion but do not suppress the phenotype exhibited by mutants of dynein intermediate chain and Arp1. Surprisingly, the stronger DeltanudF suppressor, nudAR3086C, causes an obvious decrease in the basal level of dynein's ATPase activity and an increase in dynein's distribution along microtubules. Thus, suppression of the DeltanudF phenotype may result from mechanisms other than simply the enhancement of dynein's ATPase activity. The fact that a mutation in the end of AAA4 negatively regulates dynein's ATPase activity but partially compensates for NUDF loss indicates the importance of the AAA4 domain in dynein regulation in vivo.
Resumo:
OBJECTIVES Spinal muscular atrophy (SMA) is caused by reduced levels of survival motor neuron (SMN) protein, which results in motoneuron loss. Therapeutic strategies to increase SMN levels including drug compounds, antisense oligonucleotides, and scAAV9 gene therapy have proved effective in mice. We wished to determine whether reduction of SMN in postnatal motoneurons resulted in SMA in a large animal model, whether SMA could be corrected after development of muscle weakness, and the response of clinically relevant biomarkers. METHODS Using intrathecal delivery of scAAV9 expressing an shRNA targeting pig SMN1, SMN was knocked down in motoneurons postnatally to SMA levels. This resulted in an SMA phenotype representing the first large animal model of SMA. Restoration of SMN was performed at different time points with scAAV9 expressing human SMN (scAAV9-SMN), and electrophysiology measurements and pathology were performed. RESULTS Knockdown of SMN in postnatal motoneurons results in overt proximal weakness, fibrillations on electromyography indicating active denervation, and reduced compound muscle action potential (CMAP) and motor unit number estimation (MUNE), as in human SMA. Neuropathology showed loss of motoneurons and motor axons. Presymptomatic delivery of scAAV9-SMN prevented SMA symptoms, indicating that all changes are SMN dependent. Delivery of scAAV9-SMN after symptom onset had a marked impact on phenotype, electrophysiological measures, and pathology. INTERPRETATION High SMN levels are critical in postnatal motoneurons, and reduction of SMN results in an SMA phenotype that is SMN dependent. Importantly, clinically relevant biomarkers including CMAP and MUNE are responsive to SMN restoration, and abrogation of phenotype can be achieved even after symptom onset.