977 resultados para Motion detection


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Le but de ce travail est d’étudier la faisabilité de la détection de mouvements dans des séquences d’images en utilisant l’équation de continuité et la dynamique de supraconductivité. Notre approche peut être motivée par le fait que l’équation de continuité apparait dans plusieurs techniques qui estiment le flot optique. Un grand nombre de techniques qui utilisent les flots optiques utilisent une contrainte appelée contrainte de l’invariance lumineuse. La dynamique de supraconductivité nous permet de nous affranchir de la contrainte de l’invariance lumineuse. Les expériences se feront avec la base de données de séquences d’images CDNET 2014. Pour obtenir les résultats numériques en terme de score F1, une combinaison sera faite par la suite entre la dynamique de supraconductivité et un méchanisme d’attention qui est un résumé des vérites de terrain.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Le but de ce travail est d’étudier la faisabilité de la détection de mouvements dans des séquences d’images en utilisant l’équation de continuité et la dynamique de supraconductivité. Notre approche peut être motivée par le fait que l’équation de continuité apparait dans plusieurs techniques qui estiment le flot optique. Un grand nombre de techniques qui utilisent les flots optiques utilisent une contrainte appelée contrainte de l’invariance lumineuse. La dynamique de supraconductivité nous permet de nous affranchir de la contrainte de l’invariance lumineuse. Les expériences se feront avec la base de données de séquences d’images CDNET 2014. Pour obtenir les résultats numériques en terme de score F1, une combinaison sera faite par la suite entre la dynamique de supraconductivité et un méchanisme d’attention qui est un résumé des vérites de terrain.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Purpose: To investigate the accuracy of 4 clinical instruments in the detection of glaucomatous damage. Methods: 102 eyes of 55 test subjects (Age mean = 66.5yrs, range = [39; 89]) underwent Heidelberg Retinal Tomography (HRTIII), (disc area<2.43); and standard automated perimetry (SAP) using Octopus (Dynamic); Pulsar (TOP); and Moorfields Motion Displacement Test (MDT) (ESTA strategy). Eyes were separated into three groups 1) Healthy (H): IOP<21mmHg and healthy discs (clinical examination), 39 subjects, 78 eyes; 2) Glaucoma suspect (GS): Suspicious discs (clinical examination), 12 subjects, 15 eyes; 3) Glaucoma (G): progressive structural or functional loss, 14 subjects, 20 eyes. Clinical diagnostic precision was examined using the cut-off associated with the p<5% normative limit of MD (Octopus/Pulsar), PTD (MDT) and MRA (HRT) analysis. The sensitivity, specificity and accuracy were calculated for each instrument. Results: See table Conclusions: Despite the advantage of defining glaucoma suspects using clinical optic disc examination, the HRT did not yield significantly higher accuracy than functional measures. HRT, MDT and Octopus SAP yielded higher accuracy than Pulsar perimetry, although results did not reach statistical significance. Further studies are required to investigate the structure-function correlations between these instruments.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A comprehensive field detection method is proposed that is aimed at developing advanced capability for reliable monitoring, inspection and life estimation of bridge infrastructure. The goal is to utilize Motion-Sensing Radio Transponders (RFIDS) on fully adaptive bridge monitoring to minimize the problems inherent in human inspections of bridges. We developed a novel integrated condition-based maintenance (CBM) framework integrating transformative research in RFID sensors and sensing architecture, for in-situ scour monitoring, state-of-the-art computationally efficient multiscale modeling for scour assessment.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The enhanced functional sensitivity offered by ultra-high field imaging may significantly benefit simultaneous EEG-fMRI studies, but the concurrent increases in artifact contamination can strongly compromise EEG data quality. In the present study, we focus on EEG artifacts created by head motion in the static B0 field. A novel approach for motion artifact detection is proposed, based on a simple modification of a commercial EEG cap, in which four electrodes are non-permanently adapted to record only magnetic induction effects. Simultaneous EEG-fMRI data were acquired with this setup, at 7T, from healthy volunteers undergoing a reversing-checkerboard visual stimulation paradigm. Data analysis assisted by the motion sensors revealed that, after gradient artifact correction, EEG signal variance was largely dominated by pulse artifacts (81-93%), but contributions from spontaneous motion (4-13%) were still comparable to or even larger than those of actual neuronal activity (3-9%). Multiple approaches were tested to determine the most effective procedure for denoising EEG data incorporating motion sensor information. Optimal results were obtained by applying an initial pulse artifact correction step (AAS-based), followed by motion artifact correction (based on the motion sensors) and ICA denoising. On average, motion artifact correction (after AAS) yielded a 61% reduction in signal power and a 62% increase in VEP trial-by-trial consistency. Combined with ICA, these improvements rose to a 74% power reduction and an 86% increase in trial consistency. Overall, the improvements achieved were well appreciable at single-subject and single-trial levels, and set an encouraging quality mark for simultaneous EEG-fMRI at ultra-high field.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this study, we compared direction detection thresholds of passive self-motion in the dark between artistic gymnasts and controls. Twenty-four professional female artistic gymnasts (ranging from 7 to 20 years) and age-matched controls were seated on a motion platform and asked to discriminate the direction of angular (yaw, pitch, roll) and linear (leftward–rightward) motion. Gymnasts showed lower thresholds for the linear leftward–rightward motion. Interestingly, there was no difference for the angular motions. These results show that the outstanding self-motion abilities in artistic gymnasts are not related to an overall higher sensitivity in self-motion perception. With respect to vestibular processing, our results suggest that gymnastic expertise is exclusively linked to superior interpretation of otolith signals when no change in canal signals is present. In addition, thresholds were overall lower for the older (14–20 years) than for the younger (7–13 years) participants, indicating the maturation of vestibular sensitivity from childhood to adolescence.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Introduction: In team sports the ability to use peripheral vision is essential to track a number of players and the ball. By using eye-tracking devices it was found that players either use fixations and saccades to process information on the pitch or use smooth pursuit eye movements (SPEM) to keep track of single objects (Schütz, Braun, & Gegenfurtner, 2011). However, it is assumed that peripheral vision can be used best when the gaze is stable while it is unknown whether motion changes can be equally well detected when SPEM are used especially because contrast sensitivity is reduced during SPEM (Schütz, Delipetkose, Braun, Kerzel, & Gegenfurtner, 2007). Therefore, peripheral motion change detection will be examined by contrasting a fixation condition with a SPEM condition. Methods: 13 participants (7 male, 6 female) were presented with a visual display consisting of 15 white and 1 red square. Participants were instructed to follow the red square with their eyes and press a button as soon as a white square begins to move. White square movements occurred either when the red square was still (fixation condition) or moving in a circular manner with 6 °/s (pursuit condition). The to-be-detected white square movements varied in eccentricity (4 °, 8 °, 16 °) and speed (1 °/s, 2 °/s, 4 °/s) while movement time of white squares was constant at 500 ms. 180 events should be detected in total. A Vicon-integrated eye-tracking system and a button press (1000 Hz) was used to control for eye-movements and measure detection rates and response times. Response times (ms) and missed detections (%) were measured as dependent variables and analysed with a 2 (manipulation) x 3 (eccentricity) x 3 (speed) ANOVA with repeated measures on all factors. Results: Significant response time effects were found for manipulation, F(1,12) = 224.31, p < .01, ηp2 = .95, eccentricity, F(2,24) = 56.43; p < .01, ηp2 = .83, and the interaction between the two factors, F(2,24) = 64.43; p < .01, ηp2 = .84. Response times increased as a function of eccentricity for SPEM only and were overall higher than in the fixation condition. Results further showed missed events effects for manipulation, F(1,12) = 37.14; p < .01, ηp2 = .76, eccentricity, F(2,24) = 44.90; p < .01, ηp2 = .79, the interaction between the two factors, F(2,24) = 39.52; p < .01, ηp2 = .77 and the three-way interaction manipulation x eccentricity x speed, F(2,24) = 3.01; p = .03, ηp2 = .20. While less than 2% of events were missed on average in the fixation condition as well as at 4° and 8° eccentricity in the SPEM condition, missed events increased for SPEM at 16 ° eccentricity with significantly more missed events in the 4 °/s speed condition (1 °/s: M = 34.69, SD = 20.52; 2 °/s: M = 33.34, SD = 19.40; 4 °/s: M = 39.67, SD = 19.40). Discussion: It could be shown that using SPEM impairs the ability to detect peripheral motion changes at the far periphery and that fixations not only help to detect these motion changes but also to respond faster. Due to high temporal constraints especially in team sports like soccer or basketball, fast reaction are necessary for successful anticipation and decision making. Thus, it is advised to anchor gaze at a specific location if peripheral changes (e.g. movements of other players) that require a motor response have to be detected. In contrast, SPEM should only be used if a single object, like the ball in cricket or baseball, is necessary for a successful motor response. References: Schütz, A. C., Braun, D. I., & Gegenfurtner, K. R. (2011). Eye movements and perception: A selective review. Journal of Vision, 11, 1-30. Schütz, A. C., Delipetkose, E., Braun, D. I., Kerzel, D., & Gegenfurtner, K. R. (2007). Temporal contrast sensitivity during smooth pursuit eye movements. Journal of Vision, 7, 1-15.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A preliminary study by Freeman et al (1996b) has suggested that when complex patterns of motion elicit impressions of 2-dimensionality, odd-item-out detection improves given targets can be differentiated on the basis of surface properties. Their results can be accounted for, it if is supposed that observers are permitted efficient access to 3-D surface descriptions but access to 2-D motion descriptions is restricted. To test the hypothesis, a standard search technique was employed, in which targets could be discussed on the basis of slant sign. In one experiment, slant impressions were induced through the summing of deformation and translation components. In a second theory were induced through the summing of shear and translation components. Neither showed any evidence of efficient access. A third experiment explored the possibility that access to these representations may have been hindered by a lack of grouping between the stimuli. Attempts to improve grouping failed to produce convincing evidence in support of life. An alternative explanation is that complex patterns of motion are simply not processed simultaneously. Psychophysical and physiological studies have, however, suggested that multiple mechanisms selective for complex motion do exist. Using a subthreshold summation technique I found evidence supporting the notion that complex motions are processed in parallel. Furthermore, in a spatial summation experiment, coherence thresholds were measured for displays containing different numbers of complex motion patches. Consistent with the idea that complex motion processing proceeds in parallel, increases in the number of motion patches were seen to decrease thresholds, both for expansion and rotation. Moreover, the rates of decrease were higher than those typically expected from probability summation, thus implying mechanisms are available, which can pool signals from spatially distinct complex motion flows.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rapid growth in genetics and molecular biology combined with the development of techniques for genetically engineering small animals has led to increased interest in in vivo small animal imaging. Small animal imaging has been applied frequently to the imaging of small animals (mice and rats), which are ubiquitous in modeling human diseases and testing treatments. The use of PET in small animals allows the use of subjects as their own control, reducing the interanimal variability. This allows performing longitudinal studies on the same animal and improves the accuracy of biological models. However, small animal PET still suffers from several limitations. The amounts of radiotracers needed, limited scanner sensitivity, image resolution and image quantification issues, all could clearly benefit from additional research. Because nuclear medicine imaging deals with radioactive decay, the emission of radiation energy through photons and particles alongside with the detection of these quanta and particles in different materials make Monte Carlo method an important simulation tool in both nuclear medicine research and clinical practice. In order to optimize the quantitative use of PET in clinical practice, data- and image-processing methods are also a field of intense interest and development. The evaluation of such methods often relies on the use of simulated data and images since these offer control of the ground truth. Monte Carlo simulations are widely used for PET simulation since they take into account all the random processes involved in PET imaging, from the emission of the positron to the detection of the photons by the detectors. Simulation techniques have become an importance and indispensable complement to a wide range of problems that could not be addressed by experimental or analytical approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

With the recent advances in technology and miniaturization of devices such as GPS or IMU, Unmanned Aerial Vehicles became a feasible platform for a Remote Sensing applications. The use of UAVs compared to the conventional aerial platforms provides a set of advantages such as higher spatial resolution of the derived products. UAV - based imagery obtained by a user grade cameras introduces a set of problems which have to be solved, e. g. rotational or angular differences or unknown or insufficiently precise IO and EO camera parameters. In this work, UAV - based imagery of RGB and CIR type was processed using two different workflows based on PhotoScan and VisualSfM software solutions resulting in the DSM and orthophoto products. Feature detection and matching parameters influence on the result quality as well as a processing time was examined and the optimal parameter setup was presented. Products of the both workflows were compared in terms of a quality and a spatial accuracy. Both workflows were compared by presenting the processing times and quality of the results. Finally, the obtained products were used in order to demonstrate vegetation classification. Contribution of the IHS transformations was examined with respect to the classification accuracy.