991 resultados para Modeling complexity
Resumo:
The aim of Tissue Engineering is to develop biological substitutes that will restore lost morphological and functional features of diseased or damaged portions of organs. Recently computer-aided technology has received considerable attention in the area of tissue engineering and the advance of additive manufacture (AM) techniques has significantly improved control over the pore network architecture of tissue engineering scaffolds. To regenerate tissues more efficiently, an ideal scaffold should have appropriate porosity and pore structure. More sophisticated porous configurations with higher architectures of the pore network and scaffolding structures that mimic the intricate architecture and complexity of native organs and tissues are then required. This study adopts a macro-structural shape design approach to the production of open porous materials (Titanium foams), which utilizes spatial periodicity as a simple way to generate the models. From among various pore architectures which have been studied, this work simulated pore structure by triply-periodic minimal surfaces (TPMS) for the construction of tissue engineering scaffolds. TPMS are shown to be a versatile source of biomorphic scaffold design. A set of tissue scaffolds using the TPMS-based unit cell libraries was designed. TPMS-based Titanium foams were meant to be printed three dimensional with the relative predicted geometry, microstructure and consequently mechanical properties. Trough a finite element analysis (FEA) the mechanical properties of the designed scaffolds were determined in compression and analyzed in terms of their porosity and assemblies of unit cells. The purpose of this work was to investigate the mechanical performance of TPMS models trying to understand the best compromise between mechanical and geometrical requirements of the scaffolds. The intention was to predict the structural modulus in open porous materials via structural design of interconnected three-dimensional lattices, hence optimising geometrical properties. With the aid of FEA results, it is expected that the effective mechanical properties for the TPMS-based scaffold units can be used to design optimized scaffolds for tissue engineering applications. Regardless of the influence of fabrication method, it is desirable to calculate scaffold properties so that the effect of these properties on tissue regeneration may be better understood.
Resumo:
During the last few decades an unprecedented technological growth has been at the center of the embedded systems design paramount, with Moore’s Law being the leading factor of this trend. Today in fact an ever increasing number of cores can be integrated on the same die, marking the transition from state-of-the-art multi-core chips to the new many-core design paradigm. Despite the extraordinarily high computing power, the complexity of many-core chips opens the door to several challenges. As a result of the increased silicon density of modern Systems-on-a-Chip (SoC), the design space exploration needed to find the best design has exploded and hardware designers are in fact facing the problem of a huge design space. Virtual Platforms have always been used to enable hardware-software co-design, but today they are facing with the huge complexity of both hardware and software systems. In this thesis two different research works on Virtual Platforms are presented: the first one is intended for the hardware developer, to easily allow complex cycle accurate simulations of many-core SoCs. The second work exploits the parallel computing power of off-the-shelf General Purpose Graphics Processing Units (GPGPUs), with the goal of an increased simulation speed. The term Virtualization can be used in the context of many-core systems not only to refer to the aforementioned hardware emulation tools (Virtual Platforms), but also for two other main purposes: 1) to help the programmer to achieve the maximum possible performance of an application, by hiding the complexity of the underlying hardware. 2) to efficiently exploit the high parallel hardware of many-core chips in environments with multiple active Virtual Machines. This thesis is focused on virtualization techniques with the goal to mitigate, and overtake when possible, some of the challenges introduced by the many-core design paradigm.
Resumo:
Heterogeneous materials are ubiquitous in nature and as synthetic materials. These materials provide unique combination of desirable mechanical properties emerging from its heterogeneities at different length scales. Future structural and technological applications will require the development of advanced light weight materials with superior strength and toughness. Cost effective design of the advanced high performance synthetic materials by tailoring their microstructure is the challenge facing the materials design community. Prior knowledge of structure-property relationships for these materials is imperative for optimal design. Thus, understanding such relationships for heterogeneous materials is of primary interest. Furthermore, computational burden is becoming critical concern in several areas of heterogeneous materials design. Therefore, computationally efficient and accurate predictive tools are highly essential. In the present study, we mainly focus on mechanical behavior of soft cellular materials and tough biological material such as mussel byssus thread. Cellular materials exhibit microstructural heterogeneity by interconnected network of same material phase. However, mussel byssus thread comprises of two distinct material phases. A robust numerical framework is developed to investigate the micromechanisms behind the macroscopic response of both of these materials. Using this framework, effect of microstuctural parameters has been addressed on the stress state of cellular specimens during split Hopkinson pressure bar test. A voronoi tessellation based algorithm has been developed to simulate the cellular microstructure. Micromechanisms (microinertia, microbuckling and microbending) governing macroscopic behavior of cellular solids are investigated thoroughly with respect to various microstructural and loading parameters. To understand the origin of high toughness of mussel byssus thread, a Genetic Algorithm (GA) based optimization framework has been developed. It is found that two different material phases (collagens) of mussel byssus thread are optimally distributed along the thread. These applications demonstrate that the presence of heterogeneity in the system demands high computational resources for simulation and modeling. Thus, Higher Dimensional Model Representation (HDMR) based surrogate modeling concept has been proposed to reduce computational complexity. The applicability of such methodology has been demonstrated in failure envelope construction and in multiscale finite element techniques. It is observed that surrogate based model can capture the behavior of complex material systems with sufficient accuracy. The computational algorithms presented in this thesis will further pave the way for accurate prediction of macroscopic deformation behavior of various class of advanced materials from their measurable microstructural features at a reasonable computational cost.
Resumo:
In recent years, the bio-conjugated nanostructured materials have emerged as a new class of materials for the bio-sensing and medical diagnostics applications. In spite of their multi-directional applications, interfacing nanomaterials with bio-molecules has been a challenge due to somewhat limited knowledge about the underlying physics and chemistry behind these interactions and also for the complexity of biomolecules. The main objective of this dissertation is to provide such a detailed knowledge on bioconjugated nanomaterials toward their applications in designing the next generation of sensing devices. Specifically, we investigate the changes in the electronic properties of a boron nitride nanotube (BNNT) due to the adsorption of different bio-molecules, ranging from neutral (DNA/RNA nucleobases) to polar (amino acid molecules). BNNT is a typical member of III-V compounds semiconductors with morphology similar to that of carbon nanotubes (CNTs) but with its own distinct properties. More specifically, the natural affinity of BNNTs toward living cells with no apparent toxicity instigates the applications of BNNTs in drug delivery and cell therapy. Our results predict that the adsorption of DNA/RNA nucleobases on BNNTs amounts to different degrees of modulation in the band gap of BNNTs, which can be exploited for distinguishing these nucleobases from each other. Interestingly, for the polar amino acid molecules, the nature of interaction appeared to vary ranging from Coulombic, van der Waals and covalent depending on the polarity of the individual molecules, each with a different binding strength and amount of charge transfer involved in the interaction. The strong binding of amino acid molecules on the BNNTs explains the observed protein wrapping onto BNNTs without any linkers, unlike carbon nanotubes (CNTs). Additionally, the widely varying binding energies corresponding to different amino acid molecules toward BNNTs indicate to the suitability of BNNTs for the biosensing applications, as compared to the metallic CNTs. The calculated I-V characteristics in these bioconjugated nanotubes predict notable changes in the conductivity of BNNTs due to the physisorption of DNA/RNA nucleobases. This is not the case with metallic CNTs whose transport properties remained unaltered in their conjugated systems with the nucleobases. Collectively, the bioconjugated BNNTs are found to be an excellent system for the next generation sensing devices.
Resumo:
The neurocognitive processes underlying the formation and maintenance of paranormal beliefs are important for understanding schizotypal ideation. Behavioral studies indicated that both schizotypal and paranormal ideation are based on an overreliance on the right hemisphere, whose coarse rather than focussed semantic processing may favor the emergence of 'loose' and 'uncommon' associations. To elucidate the electrophysiological basis of these behavioral observations, 35-channel resting EEG was recorded in pre-screened female strong believers and disbelievers during resting baseline. EEG data were subjected to FFT-Dipole-Approximation analysis, a reference-free frequency-domain dipole source modeling, and Regional (hemispheric) Omega Complexity analysis, a linear approach estimating the complexity of the trajectories of momentary EEG map series in state space. Compared to disbelievers, believers showed: more right-located sources of the beta2 band (18.5-21 Hz, excitatory activity); reduced interhemispheric differences in Omega complexity values; higher scores on the Magical Ideation scale; more general negative affect; and more hypnagogic-like reveries after a 4-min eyes-closed resting period. Thus, subjects differing in their declared paranormal belief displayed different active, cerebral neural populations during resting, task-free conditions. As hypothesized, believers showed relatively higher right hemispheric activation and reduced hemispheric asymmetry of functional complexity. These markers may constitute the neurophysiological basis for paranormal and schizotypal ideation.
Resumo:
By means of fixed-links modeling, the present study identified different processes of visual short-term memory (VSTM) functioning and investigated how these processes are related to intelligence. We conducted an experiment where the participants were presented with a color change detection task. Task complexity was manipulated through varying the number of presented stimuli (set size). We collected hit rate and reaction time (RT) as indicators for the amount of information retained in VSTM and speed of VSTM scanning, respectively. Due to the impurity of these measures, however, the variability in hit rate and RT was assumed to consist not only of genuine variance due to individual differences in VSTM retention and VSTM scanning but also of other, non-experimental portions of variance. Therefore, we identified two qualitatively different types of components for both hit rate and RT: (1) non-experimental components representing processes that remained constant irrespective of set size and (2) experimental components reflecting processes that increased as a function of set size. For RT, intelligence was negatively associated with the non-experimental components, but was unrelated to the experimental components assumed to represent variability in VSTM scanning speed. This finding indicates that individual differences in basic processing speed, rather than in speed of VSTM scanning, differentiates between high- and low-intelligent individuals. For hit rate, the experimental component constituting individual differences in VSTM retention was positively related to intelligence. The non-experimental components of hit rate, representing variability in basal processes, however, were not associated with intelligence. By decomposing VSTM functioning into non-experimental and experimental components, significant associations with intelligence were revealed that otherwise might have been obscured.
Resumo:
Point Distribution Models (PDM) are among the most popular shape description techniques and their usefulness has been demonstrated in a wide variety of medical imaging applications. However, to adequately characterize the underlying modeled population it is essential to have a representative number of training samples, which is not always possible. This problem is especially relevant as the complexity of the modeled structure increases, being the modeling of ensembles of multiple 3D organs one of the most challenging cases. In this paper, we introduce a new GEneralized Multi-resolution PDM (GEM-PDM) in the context of multi-organ analysis able to efficiently characterize the different inter-object relations, as well as the particular locality of each object separately. Importantly, unlike previous approaches, the configuration of the algorithm is automated thanks to a new agglomerative landmark clustering method proposed here, which equally allows us to identify smaller anatomically significant regions within organs. The significant advantage of the GEM-PDM method over two previous approaches (PDM and hierarchical PDM) in terms of shape modeling accuracy and robustness to noise, has been successfully verified for two different databases of sets of multiple organs: six subcortical brain structures, and seven abdominal organs. Finally, we propose the integration of the new shape modeling framework into an active shape-model-based segmentation algorithm. The resulting algorithm, named GEMA, provides a better overall performance than the two classical approaches tested, ASM, and hierarchical ASM, when applied to the segmentation of 3D brain MRI.
Resumo:
Finite element (FE) analysis is an important computational tool in biomechanics. However, its adoption into clinical practice has been hampered by its computational complexity and required high technical competences for clinicians. In this paper we propose a supervised learning approach to predict the outcome of the FE analysis. We demonstrate our approach on clinical CT and X-ray femur images for FE predictions ( FEP), with features extracted, respectively, from a statistical shape model and from 2D-based morphometric and density information. Using leave-one-out experiments and sensitivity analysis, comprising a database of 89 clinical cases, our method is capable of predicting the distribution of stress values for a walking loading condition with an average correlation coefficient of 0.984 and 0.976, for CT and X-ray images, respectively. These findings suggest that supervised learning approaches have the potential to leverage the clinical integration of mechanical simulations for the treatment of musculoskeletal conditions.
Resumo:
The first manuscript, entitled "Time-Series Analysis as Input for Clinical Predictive Modeling: Modeling Cardiac Arrest in a Pediatric ICU" lays out the theoretical background for the project. There are several core concepts presented in this paper. First, traditional multivariate models (where each variable is represented by only one value) provide single point-in-time snapshots of patient status: they are incapable of characterizing deterioration. Since deterioration is consistently identified as a precursor to cardiac arrests, we maintain that the traditional multivariate paradigm is insufficient for predicting arrests. We identify time series analysis as a method capable of characterizing deterioration in an objective, mathematical fashion, and describe how to build a general foundation for predictive modeling using time series analysis results as latent variables. Building a solid foundation for any given modeling task involves addressing a number of issues during the design phase. These include selecting the proper candidate features on which to base the model, and selecting the most appropriate tool to measure them. We also identified several unique design issues that are introduced when time series data elements are added to the set of candidate features. One such issue is in defining the duration and resolution of time series elements required to sufficiently characterize the time series phenomena being considered as candidate features for the predictive model. Once the duration and resolution are established, there must also be explicit mathematical or statistical operations that produce the time series analysis result to be used as a latent candidate feature. In synthesizing the comprehensive framework for building a predictive model based on time series data elements, we identified at least four classes of data that can be used in the model design. The first two classes are shared with traditional multivariate models: multivariate data and clinical latent features. Multivariate data is represented by the standard one value per variable paradigm and is widely employed in a host of clinical models and tools. These are often represented by a number present in a given cell of a table. Clinical latent features derived, rather than directly measured, data elements that more accurately represent a particular clinical phenomenon than any of the directly measured data elements in isolation. The second two classes are unique to the time series data elements. The first of these is the raw data elements. These are represented by multiple values per variable, and constitute the measured observations that are typically available to end users when they review time series data. These are often represented as dots on a graph. The final class of data results from performing time series analysis. This class of data represents the fundamental concept on which our hypothesis is based. The specific statistical or mathematical operations are up to the modeler to determine, but we generally recommend that a variety of analyses be performed in order to maximize the likelihood that a representation of the time series data elements is produced that is able to distinguish between two or more classes of outcomes. The second manuscript, entitled "Building Clinical Prediction Models Using Time Series Data: Modeling Cardiac Arrest in a Pediatric ICU" provides a detailed description, start to finish, of the methods required to prepare the data, build, and validate a predictive model that uses the time series data elements determined in the first paper. One of the fundamental tenets of the second paper is that manual implementations of time series based models are unfeasible due to the relatively large number of data elements and the complexity of preprocessing that must occur before data can be presented to the model. Each of the seventeen steps is analyzed from the perspective of how it may be automated, when necessary. We identify the general objectives and available strategies of each of the steps, and we present our rationale for choosing a specific strategy for each step in the case of predicting cardiac arrest in a pediatric intensive care unit. Another issue brought to light by the second paper is that the individual steps required to use time series data for predictive modeling are more numerous and more complex than those used for modeling with traditional multivariate data. Even after complexities attributable to the design phase (addressed in our first paper) have been accounted for, the management and manipulation of the time series elements (the preprocessing steps in particular) are issues that are not present in a traditional multivariate modeling paradigm. In our methods, we present the issues that arise from the time series data elements: defining a reference time; imputing and reducing time series data in order to conform to a predefined structure that was specified during the design phase; and normalizing variable families rather than individual variable instances. The final manuscript, entitled: "Using Time-Series Analysis to Predict Cardiac Arrest in a Pediatric Intensive Care Unit" presents the results that were obtained by applying the theoretical construct and its associated methods (detailed in the first two papers) to the case of cardiac arrest prediction in a pediatric intensive care unit. Our results showed that utilizing the trend analysis from the time series data elements reduced the number of classification errors by 73%. The area under the Receiver Operating Characteristic curve increased from a baseline of 87% to 98% by including the trend analysis. In addition to the performance measures, we were also able to demonstrate that adding raw time series data elements without their associated trend analyses improved classification accuracy as compared to the baseline multivariate model, but diminished classification accuracy as compared to when just the trend analysis features were added (ie, without adding the raw time series data elements). We believe this phenomenon was largely attributable to overfitting, which is known to increase as the ratio of candidate features to class examples rises. Furthermore, although we employed several feature reduction strategies to counteract the overfitting problem, they failed to improve the performance beyond that which was achieved by exclusion of the raw time series elements. Finally, our data demonstrated that pulse oximetry and systolic blood pressure readings tend to start diminishing about 10-20 minutes before an arrest, whereas heart rates tend to diminish rapidly less than 5 minutes before an arrest.
Resumo:
Usability plays an important role to satisfy users? needs. There are many recommendations in the HCI literature on how to improve software usability. Our research focuses on such recommendations that affect the system architecture rather than just the interface. However, improving software usability in aspects that affect architecture increases the analyst?s workload and development complexity. This paper proposes a solution based on model-driven development. We propose representing functional usability mechanisms abstractly by means of conceptual primitives. The analyst will use these primitives to incorporate functional usability features at the early stages of the development process. Following the model-driven development paradigm, these features are then automatically transformed into subsequent steps of development, a practice that is hidden from the analyst.
Resumo:
La modelización es un proceso por el que se obtienen modelos de los procesos del ´mundo real´ mediante la utilización de simplificaciones. Sin embargo, las estimaciones obtenidas con el modelo llevan implícitas incertidumbre que se debe evaluar. Mediante un análisis de sensibilidad se puede mejorar la confianza en los resultados, sin embargo, este paso a veces no se realiza debido básicamente al trabajo que lleva consigo este tipo de análisis. Además, al crear un modelo, hay que mantener un equilibrio entre la obtención de resultados lo más exactos posible mediante un modelo lo más sencillo posible. Por ello, una vez creado un modelo, es imprescindible comprobar si es necesario o no incluir más procesos que en un principio no se habían incluido. Los servicios ecosistémicos son los procesos mediante los cuales los ecosistemas mantienen y satisfacen el bienestar humano. La importancia que los servicios ecosistémicos y sus beneficios asociados tienen, junto con la necesidad de realizar una buena gestión de los mismos, han estimulado la aparición de modelos y herramientas para cuantificarlos. InVEST (Integrated Valuation of Ecosystem Services and Tradoffs) es una de estas herramientas específicas para calcular servicios eco-sistémicos, desarrollada por Natural Capital Project (Universidad de Stanford, EEUU). Como resultado del creciente interés en calcular los servicios eco-sistémicos, se prevé un incremento en la aplicación del InVEST. La investigación desarrollada en esta Tesis pretende ayudar en esas otras importantes fases necesarias después de la creación de un modelo, abarcando los dos siguientes trabajos. El primero es la aplicación de un análisis de sensibilidad al modelo en una cuenca concreta mediante la metodología más adecuada. El segundo es relativo a los procesos dentro de la corriente fluvial que actualmente no se incluyen en el modelo mediante la creación y aplicación de una metodología que estudiara el papel que juegan estos procesos en el modelo InVEST de retención de nutrientes en el área de estudio. Los resultados de esta Tesis contribuirán a comprender la incertidumbre involucrada en el proceso de modelado. También pondrá de manifiesto la necesidad de comprobar el comportamiento de un modelo antes de utilizarlo y en el momento de interpretar los resultados obtenidos. El trabajo en esta Tesis contribuirá a mejorar la plataforma InVEST, que es una herramienta importante en el ámbito de los servicios de los ecosistemas. Dicho trabajo beneficiará a los futuros usuarios de la herramienta, ya sean investigadores (en investigaciones futuras), o técnicos (en futuros trabajos de toma de decisiones o gestión ecosistemas). ABSTRACT Modeling is the process to idealize real-world situations through simplifications in order to obtain a model. However, model estimations lead to uncertainties that have to be evaluated formally. The role of the sensitivity analysis (SA) is to assign model output uncertainty based on the inputs and can increase confidence in model, however, it is often omitted in modelling, usually as a result of the growing effort it involves. In addition, the balance between accuracy and simplicity is not easy to assess. For this reason, when a model is developed, it is necessary to test it in order to understand its behavior and to include, if necessary, more complexity to get a better response. Ecosystem services are the conditions and processes through which natural ecosystems, and their constituent species, sustain and fulfill human life. The relevance of ecosystem services and the need to better manage them and their associated benefits have stimulated the emergence of models and tools to measure them. InVEST, Integrated Valuation of Ecosystem Services and Tradoffs, is one of these ecosystem services-specific tools developed by the Natural Capital Project (Stanford University, USA). As a result of the growing interest in measuring ecosystem services, the use of InVEST is anticipated to grow exponentially in the coming years. However, apart from model development, making a model involves other crucial stages such as its evaluation and application in order to validate estimations. The work developed in this thesis tries to help in this relevant and imperative phase of the modeling process, and does so in two different ways. The first one is to conduct a sensitivity analysis of the model, which consists in choosing and applying a methodology in an area and analyzing the results obtained. The second is related to the in-stream processes that are not modeled in the current model, and consists in creating and applying a methodology for testing the streams role in the InVEST nutrient retention model in a case study, analyzing the results obtained. The results of this Thesis will contribute to the understanding of the uncertainties involved in the modeling process. It will also illustrate the need to check the behavior of every model developed before putting them in production and illustrate the importance of understanding their behavior in terms of correctly interpreting the results obtained in light of uncertainty. The work in this thesis will contribute to improve the InVEST platform, which is an important tool in the field of ecosystem services. Such work will benefit future users, whether they are researchers (in their future research), or technicians (in their future work in ecosystem conservation or management decisions).
Resumo:
La modelización es un proceso por el que se obtienen modelos de los procesos del ´mundo real´ mediante la utilización de simplificaciones. Sin embargo, las estimaciones obtenidas con el modelo llevan implícitas incertidumbre que se debe evaluar. Mediante un análisis de sensibilidad se puede mejorar la confianza en los resultados, sin embargo, este paso a veces no se realiza debido básicamente al trabajo que lleva consigo este tipo de análisis. Además, al crear un modelo, hay que mantener un equilibrio entre la obtención de resultados lo más exactos posible mediante un modelo lo más sencillo posible. Por ello, una vez creado un modelo, es imprescindible comprobar si es necesario o no incluir más procesos que en un principio no se habían incluido. Los servicios ecosistémicos son los procesos mediante los cuales los ecosistemas mantienen y satisfacen el bienestar humano. La importancia que los servicios ecosistémicos y sus beneficios asociados tienen, junto con la necesidad de realizar una buena gestión de los mismos, han estimulado la aparición de modelos y herramientas para cuantificarlos. InVEST (Integrated Valuation of Ecosystem Services and Tradoffs) es una de estas herramientas específicas para calcular servicios eco-sistémicos, desarrollada por Natural Capital Project (Universidad de Stanford, EEUU). Como resultado del creciente interés en calcular los servicios eco-sistémicos, se prevé un incremento en la aplicación del InVEST. La investigación desarrollada en esta Tesis pretende ayudar en esas otras importantes fases necesarias después de la creación de un modelo, abarcando los dos siguientes trabajos. El primero es la aplicación de un análisis de sensibilidad al modelo en una cuenca concreta mediante la metodología más adecuada. El segundo es relativo a los procesos dentro de la corriente fluvial que actualmente no se incluyen en el modelo mediante la creación y aplicación de una metodología que estudiara el papel que juegan estos procesos en el modelo InVEST de retención de nutrientes en el área de estudio. Los resultados de esta Tesis contribuirán a comprender la incertidumbre involucrada en el proceso de modelado. También pondrá de manifiesto la necesidad de comprobar el comportamiento de un modelo antes de utilizarlo y en el momento de interpretar los resultados obtenidos. El trabajo en esta Tesis contribuirá a mejorar la plataforma InVEST, que es una herramienta importante en el ámbito de los servicios de los ecosistemas. Dicho trabajo beneficiará a los futuros usuarios de la herramienta, ya sean investigadores (en investigaciones futuras), o técnicos (en futuros trabajos de toma de decisiones o gestión ecosistemas). ABSTRACT Modeling is the process to idealize real-world situations through simplifications in order to obtain a model. However, model estimations lead to uncertainties that have to be evaluated formally. The role of the sensitivity analysis (SA) is to assign model output uncertainty based on the inputs and can increase confidence in model, however, it is often omitted in modelling, usually as a result of the growing effort it involves. In addition, the balance between accuracy and simplicity is not easy to assess. For this reason, when a model is developed, it is necessary to test it in order to understand its behavior and to include, if necessary, more complexity to get a better response. Ecosystem services are the conditions and processes through which natural ecosystems, and their constituent species, sustain and fulfill human life. The relevance of ecosystem services and the need to better manage them and their associated benefits have stimulated the emergence of models and tools to measure them. InVEST, Integrated Valuation of Ecosystem Services and Tradoffs, is one of these ecosystem services-specific tools developed by the Natural Capital Project (Stanford University, USA). As a result of the growing interest in measuring ecosystem services, the use of InVEST is anticipated to grow exponentially in the coming years. However, apart from model development, making a model involves other crucial stages such as its evaluation and application in order to validate estimations. The work developed in this thesis tries to help in this relevant and imperative phase of the modeling process, and does so in two different ways. The first one is to conduct a sensitivity analysis of the model, which consists in choosing and applying a methodology in an area and analyzing the results obtained. The second is related to the in-stream processes that are not modeled in the current model, and consists in creating and applying a methodology for testing the streams role in the InVEST nutrient retention model in a case study, analyzing the results obtained. The results of this Thesis will contribute to the understanding of the uncertainties involved in the modeling process. It will also illustrate the need to check the behavior of every model developed before putting them in production and illustrate the importance of understanding their behavior in terms of correctly interpreting the results obtained in light of uncertainty. The work in this thesis will contribute to improve the InVEST platform, which is an important tool in the field of ecosystem services. Such work will benefit future users, whether they are researchers (in their future research), or technicians (in their future work in ecosystem conservation or management decisions).
Resumo:
We summarize studies of earthquake fault models that give rise to slip complexities like those in natural earthquakes. For models of smooth faults between elastically deformable continua, it is critical that the friction laws involve a characteristic distance for slip weakening or evolution of surface state. That results in a finite nucleation size, or coherent slip patch size, h*. Models of smooth faults, using numerical cell size properly small compared to h*, show periodic response or complex and apparently chaotic histories of large events but have not been found to show small event complexity like the self-similar (power law) Gutenberg-Richter frequency-size statistics. This conclusion is supported in the present paper by fully inertial elastodynamic modeling of earthquake sequences. In contrast, some models of locally heterogeneous faults with quasi-independent fault segments, represented approximately by simulations with cell size larger than h* so that the model becomes "inherently discrete," do show small event complexity of the Gutenberg-Richter type. Models based on classical friction laws without a weakening length scale or for which the numerical procedure imposes an abrupt strength drop at the onset of slip have h* = 0 and hence always fall into the inherently discrete class. We suggest that the small-event complexity that some such models show will not survive regularization of the constitutive description, by inclusion of an appropriate length scale leading to a finite h*, and a corresponding reduction of numerical grid size.
Resumo:
A critical assessment is presented for the existing fluid flow models used for dense medium cyclones (DMCs) and hydrocyclones. As the present discussion indicates, the understanding of dense medium cyclone flow is still far from the complete. However, its similarity to the hydrocyclone provides a basis for improved understanding of fluid flow in DMCs. The complexity of fluid flow in DMCs is basically due to the existence of medium as well as the dominance of turbulent particle size and density effects on separation. Both the theoretical and experimental analysis is done with respect to two-phase motions and solid phase flow in hydrocyclones or DMCs. A detailed discussion is presented on the empirical, semiempirical, and the numerical models based upon both the vorticity-stream function approach and Navier-Stokes equations in their primitive variables and in cylindrical coordinates available in literature. The existing equations describing turbulence and multiphase flows in cyclone are also critically reviewed.