Automatic multi-resolution shape modeling of multi-organ structures.


Autoria(s): Cerrolaza, Juan J; Reyes, Mauricio; Summers, Ronald M; González-Ballester, Miguel Ángel; Linguraru, Marius George
Data(s)

01/10/2015

Resumo

Point Distribution Models (PDM) are among the most popular shape description techniques and their usefulness has been demonstrated in a wide variety of medical imaging applications. However, to adequately characterize the underlying modeled population it is essential to have a representative number of training samples, which is not always possible. This problem is especially relevant as the complexity of the modeled structure increases, being the modeling of ensembles of multiple 3D organs one of the most challenging cases. In this paper, we introduce a new GEneralized Multi-resolution PDM (GEM-PDM) in the context of multi-organ analysis able to efficiently characterize the different inter-object relations, as well as the particular locality of each object separately. Importantly, unlike previous approaches, the configuration of the algorithm is automated thanks to a new agglomerative landmark clustering method proposed here, which equally allows us to identify smaller anatomically significant regions within organs. The significant advantage of the GEM-PDM method over two previous approaches (PDM and hierarchical PDM) in terms of shape modeling accuracy and robustness to noise, has been successfully verified for two different databases of sets of multiple organs: six subcortical brain structures, and seven abdominal organs. Finally, we propose the integration of the new shape modeling framework into an active shape-model-based segmentation algorithm. The resulting algorithm, named GEMA, provides a better overall performance than the two classical approaches tested, ASM, and hierarchical ASM, when applied to the segmentation of 3D brain MRI.

Formato

application/pdf

Identificador

http://boris.unibe.ch/72749/1/CerrolazaMedia2015.pdf

Cerrolaza, Juan J; Reyes, Mauricio; Summers, Ronald M; González-Ballester, Miguel Ángel; Linguraru, Marius George (2015). Automatic multi-resolution shape modeling of multi-organ structures. Medical image analysis, 25(1), pp. 11-21. Elsevier 10.1016/j.media.2015.04.003 <http://dx.doi.org/10.1016/j.media.2015.04.003>

doi:10.7892/boris.72749

info:doi:10.1016/j.media.2015.04.003

info:pmid:25977156

urn:issn:1361-8415

Idioma(s)

eng

Publicador

Elsevier

Relação

http://boris.unibe.ch/72749/

Direitos

info:eu-repo/semantics/restrictedAccess

Fonte

Cerrolaza, Juan J; Reyes, Mauricio; Summers, Ronald M; González-Ballester, Miguel Ángel; Linguraru, Marius George (2015). Automatic multi-resolution shape modeling of multi-organ structures. Medical image analysis, 25(1), pp. 11-21. Elsevier 10.1016/j.media.2015.04.003 <http://dx.doi.org/10.1016/j.media.2015.04.003>

Palavras-Chave #570 Life sciences; biology #610 Medicine & health #620 Engineering
Tipo

info:eu-repo/semantics/article

info:eu-repo/semantics/publishedVersion

PeerReviewed