881 resultados para Model transformation learning
Resumo:
En este estudio se evalúa el rendimiento de los métodos de Bag-of-Visualterms (BOV) para la clasificación automática de imágenes digitales de la base de datos del artista Miquel Planas. Estas imágenes intervienen en la ideación y diseño de su producción escultórica. Constituye un interesante desafío dada la dificultad de la categorización de escenas cuando éstas difieren más por los contenidos semánticos que por los objetos que contienen. Hemos empleado un método de reconocimiento basado en Kernels introducido por Lazebnik, Schmid y Ponce en 2006. Los resultados son prometedores, en promedio, la puntuación del rendimiento es aproximadamente del 70%. Los experimentos sugieren que la categorización automática de imágenes basada en métodos de visión artificial puede proporcionar principios objetivos en la catalogación de imágenes y que los resultados obtenidos pueden ser aplicados en diferentes campos de la creación artística.
Resumo:
Economic and environmental load dispatch aims to determine the amount of electricity generated from power plants to meet load demand while minimizing fossil fuel costs and air pollution emissions subject to operational and licensing requirements. These two scheduling problems are commonly formulated with non-smooth cost functions respectively considering various effects and constraints, such as the valve point effect, power balance and ramp rate limits. The expected increase in plug-in electric vehicles is likely to see a significant impact on the power system due to high charging power consumption and significant uncertainty in charging times. In this paper, multiple electric vehicle charging profiles are comparatively integrated into a 24-hour load demand in an economic and environment dispatch model. Self-learning teaching-learning based optimization (TLBO) is employed to solve the non-convex non-linear dispatch problems. Numerical results on well-known benchmark functions, as well as test systems with different scales of generation units show the significance of the new scheduling method.
Resumo:
Natural disasters are frequently exacerbated by anthropogenic mechanisms and have social and political consequences for communities. The role of community learning in disasters is seen to be increasingly important. However, the ways in which such learning unfolds in a disaster can differ substantially from case to case. This article uses a comparative case study methodology to examine catastrophes and major disasters from five countries (Japan, New Zealand, UK, US and Germany) to consider how community learning and adaptation occurs. An ecological model of learning is considered, where community learning is of small loop (adaptive, incremental, experimental) type or large loop (paradigm changing) type. Using this model we consider that there are three types of community learning that occur in disasters (navigation, organisation, reframing). The type of community learning that actually develops in a disaster depends upon a range of social factors such as stress and trauma, civic innovation and coercion.
Resumo:
Tese de doutoramento, Informática (Bioinformática), Universidade de Lisboa, Faculdade de Ciências, 2014
Resumo:
This study focused on obtaining a deeper understanding of the perceived learning of female professionals during workplace transition. The women's lived experiences were explored through a feminist interpretive lens (Bloom, 1998). The study also drew upon concepts from adult learning such as barriers and facilitating factors to learning, resistance, transformative learning, and multiple ways of knowing. Five women participated in a 1 -hour interview and a focus group activity. The findings are presented under the 2 broad themes of perceived learning and factors affecting learning. The most common theme of perceived learning was participants' experience of increased self-knowledge. Additionally, while learning was thought of as a struggle, it provided either an opportunity for a reexamination of goals or a reexamination of self. Reflection by participants seemed to follow two orientations and other types of perceived learning included experiential, formal, and informal learning. In the broad theme of factors affecting learning, contradictions and conflict emerged through the examination of participants' multiple subjectivities, and within their naming of many factors as both facilitating factors and barriers to learning. The factors affecting learning themes included personal relationships, professional communities, selfesteem, attitude and emotion, the gendered experience of transition, time, and finances. The final theme explored participants' view of work and their orientations to the future. A proposed model of learning during workplace transition is presented (Figure 1 ) and the findings discussed within this proposed model's framework. Additional developmental theories of women (Josselson, 1987; Levinson & Levinson, 1996), communities of practice theories (Wenger, 1998), and career resilience theories (Pulley, 1995) are discussed within the context of the proposed model. Implications to practice for career counsellors, people going through workplace transition, human resource managers and career coaches were explored. Additionally implications to theory and future areas of research are also discussed.
Resumo:
La recherche en génie logiciel a depuis longtemps tenté de mieux comprendre le processus de développement logiciel, minimalement, pour en reproduire les bonnes pratiques, et idéalement, pour pouvoir le mécaniser. On peut identifier deux approches majeures pour caractériser le processus. La première approche, dite transformationnelle, perçoit le processus comme une séquence de transformations préservant certaines propriétés des données à l’entrée. Cette idée a été récemment reprise par l’architecture dirigée par les modèles de l’OMG. La deuxième approche consiste à répertorier et à codifier des solutions éprouvées à des problèmes récurrents. Les recherches sur les styles architecturaux, les patrons de conception, ou les cadres d’applications s’inscrivent dans cette approche. Notre travail de recherche reconnaît la complémentarité des deux approches, notamment pour l’étape de conception: dans le cadre du développement dirigé par les modèles, nous percevons l’étape de conception comme l’application de patrons de solutions aux modèles reçus en entrée. Il est coutume de définir l’étape de conception en termes de conception architecturale, et conception détaillée. La conception architecturale se préoccupe d’organiser un logiciel en composants répondant à un ensemble d’exigences non-fonctionnelles, alors que la conception détaillée se préoccupe, en quelque sorte, du contenu de ces composants. La conception architecturale s’appuie sur des styles architecturaux qui sont des principes d’organisation permettant d’optimiser certaines qualités, alors que la conception détaillée s’appuie sur des patrons de conception pour attribuer les responsabilités aux classes. Les styles architecturaux et les patrons de conception sont des artefacts qui codifient des solutions éprouvées à des problèmes récurrents de conception. Alors que ces artefacts sont bien documentés, la décision de les appliquer reste essentiellement manuelle. De plus, les outils proposés n’offrent pas un support adéquat pour les appliquer à des modèles existants. Dans cette thèse, nous nous attaquons à la conception détaillée, et plus particulièrement, à la transformation de modèles par application de patrons de conception, en partie parce que les patrons de conception sont moins complexes, et en partie parce que l’implémentation des styles architecturaux passe souvent par les patrons de conception. Ainsi, nous proposons une approche pour représenter et appliquer les patrons de conception. Notre approche se base sur la représentation explicite des problèmes résolus par ces patrons. En effet, la représentation explicite du problème résolu par un patron permet : (1) de mieux comprendre le patron, (2) de reconnaître l’opportunité d’appliquer le patron en détectant une instance de la représentation du problème dans les modèles du système considéré, et (3) d’automatiser l’application du patron en la représentant, de façon déclarative, par une transformation d’une instance du problème en une instance de la solution. Pour vérifier et valider notre approche, nous l’avons utilisée pour représenter et appliquer différents patrons de conception et nous avons effectué des tests pratiques sur des modèles générés à partir de logiciels libres.
Resumo:
Cette thèse a pour but d’améliorer l’automatisation dans l’ingénierie dirigée par les modèles (MDE pour Model Driven Engineering). MDE est un paradigme qui promet de réduire la complexité du logiciel par l’utilisation intensive de modèles et des transformations automatiques entre modèles (TM). D’une façon simplifiée, dans la vision du MDE, les spécialistes utilisent plusieurs modèles pour représenter un logiciel, et ils produisent le code source en transformant automatiquement ces modèles. Conséquemment, l’automatisation est un facteur clé et un principe fondateur de MDE. En plus des TM, d’autres activités ont besoin d’automatisation, e.g. la définition des langages de modélisation et la migration de logiciels. Dans ce contexte, la contribution principale de cette thèse est de proposer une approche générale pour améliorer l’automatisation du MDE. Notre approche est basée sur la recherche méta-heuristique guidée par les exemples. Nous appliquons cette approche sur deux problèmes importants de MDE, (1) la transformation des modèles et (2) la définition précise de langages de modélisation. Pour le premier problème, nous distinguons entre la transformation dans le contexte de la migration et les transformations générales entre modèles. Dans le cas de la migration, nous proposons une méthode de regroupement logiciel (Software Clustering) basée sur une méta-heuristique guidée par des exemples de regroupement. De la même façon, pour les transformations générales, nous apprenons des transformations entre modèles en utilisant un algorithme de programmation génétique qui s’inspire des exemples des transformations passées. Pour la définition précise de langages de modélisation, nous proposons une méthode basée sur une recherche méta-heuristique, qui dérive des règles de bonne formation pour les méta-modèles, avec l’objectif de bien discriminer entre modèles valides et invalides. Les études empiriques que nous avons menées, montrent que les approches proposées obtiennent des bons résultats tant quantitatifs que qualitatifs. Ceux-ci nous permettent de conclure que l’amélioration de l’automatisation du MDE en utilisant des méthodes de recherche méta-heuristique et des exemples peut contribuer à l’adoption plus large de MDE dans l’industrie à là venir.
Resumo:
Esta dissertação tem como objectivo principal procurar contribuir para a discussão em torno das valências das ferramentas da Qualidade aplicadas ao campo museal. O seu enfoque particular desenvolve-se ao nível dos serviços educativos, procurando avaliar os seus processos e resultados. Partindo da premissa de que os museus que aplicam os princípios da Qualidade nas suas práticas museais estão mais aptos a inspirarem e apoiarem as necessidades de aprendizagem dos seus utilizadores, esta dissertação defenderá as instituições museológicas enquanto organizações de conhecimento, sendo a aprendizagem o âmago da sua acção. A sua questão orientadora centra-se em torno da pertinência da aplicação da ferramenta de auto-avaliação Inspiring Learning for All em museus portugueses.
Resumo:
The development of effective methods for predicting the quality of three-dimensional (3D) models is fundamentally important for the success of tertiary structure (TS) prediction strategies. Since CASP7, the Quality Assessment (QA) category has existed to gauge the ability of various model quality assessment programs (MQAPs) at predicting the relative quality of individual 3D models. For the CASP8 experiment, automated predictions were submitted in the QA category using two methods from the ModFOLD server-ModFOLD version 1.1 and ModFOLDclust. ModFOLD version 1.1 is a single-model machine learning based method, which was used for automated predictions of global model quality (QMODE1). ModFOLDclust is a simple clustering based method, which was used for automated predictions of both global and local quality (QMODE2). In addition, manual predictions of model quality were made using ModFOLD version 2.0-an experimental method that combines the scores from ModFOLDclust and ModFOLD v1.1. Predictions from the ModFOLDclust method were the most successful of the three in terms of the global model quality, whilst the ModFOLD v1.1 method was comparable in performance to other single-model based methods. In addition, the ModFOLDclust method performed well at predicting the per-residue, or local, model quality scores. Predictions of the per-residue errors in our own 3D models, selected using the ModFOLD v2.0 method, were also the most accurate compared with those from other methods. All of the MQAPs described are publicly accessible via the ModFOLD server at: http://www.reading.ac.uk/bioinf/ModFOLD/. The methods are also freely available to download from: http://www.reading.ac.uk/bioinf/downloads/.
Resumo:
One of the most important characteristics of intelligent activity is the ability to change behaviour according to many forms of feedback. Through learning an agent can interact with its environment to improve its performance over time. However, most of the techniques known that involves learning are time expensive, i.e., once the agent is supposed to learn over time by experimentation, the task has to be executed many times. Hence, high fidelity simulators can save a lot of time. In this context, this paper describes the framework designed to allow a team of real RoboNova-I humanoids robots to be simulated under USARSim environment. Details about the complete process of modeling and programming the robot are given, as well as the learning methodology proposed to improve robot's performance. Due to the use of a high fidelity model, the learning algorithms can be widely explored in simulation before adapted to real robots. © 2008 Springer-Verlag Berlin Heidelberg.
Resumo:
Dopaminergic signals play a mathematically precise role in reward-related learning, and variations in dopaminergic signaling have been implicated in vulnerability to addiction. Here, we provide a detailed overview of the relationship between theoretical, mathematical, and experimental accounts of phasic dopamine signaling, with implications for the role of learning-related dopamine signaling in addiction and related disorders. We describe the theoretical and behavioral characteristics of model-free learning based on errors in the prediction of reward, including step-by-step explanations of the underlying equations. We then use recent insights from an animal model that highlights individual variation in learning during a Pavlovian conditioning paradigm to describe overlapping aspects of incentive salience attribution and model-free learning. We argue that this provides a computationally coherent account of some features of addiction.
Resumo:
This paper analyzes the role of Computer Algebra Systems (CAS) in a model of learning based on competences. The proposal is an e-learning model Linear Algebra course for Engineering, which includes the use of a CAS (Maxima) and focuses on problem solving. A reference model has been taken from the Spanish Open University. The proper use of CAS is defined as an indicator of the generic ompetence: Use of Technology. Additionally, we show that using CAS could help to enhance the following generic competences: Self Learning, Planning and Organization, Communication and Writing, Mathematical and Technical Writing, Information Management and Critical Thinking.
Resumo:
Los sistemas técnicos son cada vez más complejos, incorporan funciones más avanzadas, están más integrados con otros sistemas y trabajan en entornos menos controlados. Todo esto supone unas condiciones más exigentes y con mayor incertidumbre para los sistemas de control, a los que además se demanda un comportamiento más autónomo y fiable. La adaptabilidad de manera autónoma es un reto para tecnologías de control actualmente. El proyecto de investigación ASys propone abordarlo trasladando la responsabilidad de la capacidad de adaptación del sistema de los ingenieros en tiempo de diseño al propio sistema en operación. Esta tesis pretende avanzar en la formulación y materialización técnica de los principios de ASys de cognición y auto-consciencia basadas en modelos y autogestión de los sistemas en tiempo de operación para una autonomía robusta. Para ello el trabajo se ha centrado en la capacidad de auto-conciencia, inspirada en los sistemas biológicos, y se ha explorado la posibilidad de integrarla en la arquitectura de los sistemas de control. Además de la auto-consciencia, se han explorado otros temas relevantes: modelado funcional, modelado de software, tecnología de los patrones, tecnología de componentes, tolerancia a fallos. Se ha analizado el estado de la técnica en los ámbitos pertinentes para las cuestiones de la auto-consciencia y la adaptabilidad en sistemas técnicos: arquitecturas cognitivas, control tolerante a fallos, y arquitecturas software dinámicas y computación autonómica. El marco teórico de ASys existente de sistemas autónomos cognitivos ha sido adaptado para servir de base para este análisis de autoconsciencia y adaptación y para dar sustento conceptual al posterior desarrollo de la solución. La tesis propone una solución general de diseño para la construcción de sistemas autónomos auto-conscientes. La idea central es la integración de un meta-controlador en la arquitectura de control del sistema autónomo, capaz de percibir la estado funcional del sistema de control y, si es necesario, reconfigurarlo en tiempo de operación. Esta solución de metacontrol se ha formalizado en cuatro patrones de diseño: i) el Patrón Metacontrol, que define la integración de un subsistema de metacontrol, responsable de controlar al propio sistema de control a través de la interfaz proporcionada por su plataforma de componentes, ii) el patrón Bucle de Control Epistémico, que define un bucle de control cognitivo basado en el modelos y que se puede aplicar al diseño del metacontrol, iii) el patrón de Reflexión basada en Modelo Profundo propone una solución para construir el modelo ejecutable utilizado por el meta-controlador mediante una transformación de modelo a modelo a partir del modelo de ingeniería del sistema, y, finalmente, iv) el Patrón Metacontrol Funcional, que estructura el meta-controlador en dos bucles, uno para el control de la configuración de los componentes del sistema de control, y otro sobre éste, controlando las funciones que realiza dicha configuración de componentes; de esta manera las consideraciones funcionales y estructurales se desacoplan. La Arquitectura OM y el metamodelo TOMASys son las piezas centrales del marco arquitectónico desarrollado para materializar la solución compuesta de los patrones anteriores. El metamodelo TOMASys ha sido desarrollado para la representación de la estructura y su relación con los requisitos funcionales de cualquier sistema autónomo. La Arquitectura OM es un patrón de referencia para la construcción de una metacontrolador integrando los patrones de diseño propuestos. Este meta-controlador se puede integrar en la arquitectura de cualquier sistema control basado en componentes. El elemento clave de su funcionamiento es un modelo TOMASys del sistema decontrol, que el meta-controlador usa para monitorizarlo y calcular las acciones de reconfiguración necesarias para adaptarlo a las circunstancias en cada momento. Un proceso de ingeniería, complementado con otros recursos, ha sido elaborado para guiar la aplicación del marco arquitectónico OM. Dicho Proceso de Ingeniería OM define la metodología a seguir para construir el subsistema de metacontrol para un sistema autónomo a partir del modelo funcional del mismo. La librería OMJava proporciona una implementación del meta-controlador OM que se puede integrar en el control de cualquier sistema autónomo, independientemente del dominio de la aplicación o de su tecnología de implementación. Para concluir, la solución completa ha sido validada con el desarrollo de un robot móvil autónomo que incorpora un meta-controlador con la Arquitectura OM. Las propiedades de auto-consciencia y adaptación proporcionadas por el meta-controlador han sido validadas en diferentes escenarios de operación del robot, en los que el sistema era capaz de sobreponerse a fallos en el sistema de control mediante reconfiguraciones orquestadas por el metacontrolador. ABSTRACT Technical systems are becoming more complex, they incorporate more advanced functionalities, they are more integrated with other systems and they are deployed in less controlled environments. All this supposes a more demanding and uncertain scenario for control systems, which are also required to be more autonomous and dependable. Autonomous adaptivity is a current challenge for extant control technologies. The ASys research project proposes to address it by moving the responsibility for adaptivity from the engineers at design time to the system at run-time. This thesis has intended to advance in the formulation and technical reification of ASys principles of model-based self-cognition and having systems self-handle at runtime for robust autonomy. For that it has focused on the biologically inspired capability of self-awareness, and explored the possibilities to embed it into the very architecture of control systems. Besides self-awareness, other themes related to the envisioned solution have been explored: functional modeling, software modeling, patterns technology, components technology, fault tolerance. The state of the art in fields relevant for the issues of self-awareness and adaptivity has been analysed: cognitive architectures, fault-tolerant control, and software architectural reflection and autonomic computing. The extant and evolving ASys Theoretical Framework for cognitive autonomous systems has been adapted to provide a basement for this selfhood-centred analysis and to conceptually support the subsequent development of our solution. The thesis proposes a general design solution for building self-aware autonomous systems. Its central idea is the integration of a metacontroller in the control architecture of the autonomous system, capable of perceiving the functional state of the control system and reconfiguring it if necessary at run-time. This metacontrol solution has been formalised into four design patterns: i) the Metacontrol Pattern, which defines the integration of a metacontrol subsystem, controlling the domain control system through an interface provided by its implementation component platform, ii) the Epistemic Control Loop pattern, which defines a modelbased cognitive control loop that can be applied to the design of such a metacontroller, iii) the Deep Model Reflection pattern proposes a solution to produce the online executable model used by the metacontroller by model-to-model transformation from the engineering model, and, finally, iv) the Functional Metacontrol pattern, which proposes to structure the metacontroller in two loops, one for controlling the configuration of components of the controller, and another one on top of the former, controlling the functions being realised by that configuration; this way the functional and structural concerns become decoupled. The OM Architecture and the TOMASys metamodel are the core pieces of the architectural framework developed to reify this patterned solution. The TOMASys metamodel has been developed for representing the structure and its relation to the functional requirements of any autonomous system. The OM architecture is a blueprint for building a metacontroller according to the patterns. This metacontroller can be integrated on top of any component-based control architecture. At the core of its operation lies a TOMASys model of the control system. An engineering process and accompanying assets have been constructed to complete and exploit the architectural framework. The OM Engineering Process defines the process to follow to develop the metacontrol subsystem from the functional model of the controller of the autonomous system. The OMJava library provides a domain and application-independent implementation of an OM Metacontroller than can be used in the implementation phase of OMEP. Finally, the complete solution has been validated in the development of an autonomous mobile robot that incorporates an OM metacontroller. The functional selfawareness and adaptivity properties achieved thanks to the metacontrol system have been validated in different scenarios. In these scenarios the robot was able to overcome failures in the control system thanks to reconfigurations performed by the metacontroller.
Resumo:
Data mining is one of the most important analysis techniques to automatically extract knowledge from large amount of data. Nowadays, data mining is based on low-level specifications of the employed techniques typically bounded to a specific analysis platform. Therefore, data mining lacks a modelling architecture that allows analysts to consider it as a truly software-engineering process. Bearing in mind this situation, we propose a model-driven approach which is based on (i) a conceptual modelling framework for data mining, and (ii) a set of model transformations to automatically generate both the data under analysis (that is deployed via data-warehousing technology) and the analysis models for data mining (tailored to a specific platform). Thus, analysts can concentrate on understanding the analysis problem via conceptual data-mining models instead of wasting efforts on low-level programming tasks related to the underlying-platform technical details. These time consuming tasks are now entrusted to the model-transformations scaffolding. The feasibility of our approach is shown by means of a hypothetical data-mining scenario where a time series analysis is required.
Resumo:
Many Australian grain growers need to change their management approach to ensure their continued viability, but do not have the required knowledge and skills. Uptake of relevant education and training is poor, despite the positive correlation between learning, change and farm viability. As men are generally occupied with the operational aspects of the farm, much of the management role has been taken on by their partners, despite their lack of relevant formal qualifications. Professional development of farm partners therefore has the potential to improve the viability of grain growers. A model combining learning circles and action learning projects is proposed.