936 resultados para Microbial Glucosyltransferase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Twenty macropods from five locations in Queensland, Australia, grazing on a variety of native pastures were surveyed and the bacterial community of the foregut was examined using 454-amplicon pyrosequencing. Specifically, the V3/V4 region of 16S rRNA gene was examined. A total of 5040 OTUs were identified in the data set (post filtering). Thirty-two OTUs were identified as 'shared' OTUS (i.e. present in all samples) belonging to either Firmicutes or Bacteroidetes (Clostridiales/Bacteroidales). These phyla predominated the general microbial community in all macropods. Genera represented within the shared OTUs included: unclassified Ruminococcaceae, unclassified Lachnospiraceae, unclassified Clostridiales, Peptococcus sp. Coprococcus spp., Streptococcus spp., Blautia sp., Ruminoccocus sp., Eubacterium sp., Dorea sp., Oscillospira sp. and Butyrivibrio sp. The composition of the bacterial community of the foregut samples of each the host species (Macropus rufus, Macropus giganteus and Macropus robustus) was significantly different allowing differentiation between the host species based on alpha and beta diversity measures. Specifically, eleven dominant OTUs that separated the three host species were identified and classified as: unclassified Ruminococcaceae, unclassified Bacteroidales, Prevotella spp. and a Syntrophococcus sucromutans. Putative reductive acetogens and fibrolytic bacteria were also identified in samples. Future work will investigate the presence and role of fibrolytics and acetogens in these ecosystems. Ideally, the isolation and characterization of these organisms will be used for enhanced feed efficiency in cattle, methane mitigation and potentially for other industries such as the biofuel industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flax and hemp have traditionally been used mainly for textiles, but recently interest has also been focused on non-textile applications. Microbial quality throughout the whole processing chain of bast fibres has not previously been studied. This study concentrates on the microbial quality and possible microbial risks in the production chain of hemp and flax fibres and fibrous thermal insulations. In order to be able to utilize hemp and flax fibres, the bast fibres must be separated from the rest of the plant. Non-cellulosic components can be removed with various pretreatment processes, which are associated with a certain risk of microbial contamination. In this study enzymatic retting and steam explosion (STEX) were examined as pretreatment processes. On the basis of the results obtained in this study, the microbial contents on stalks of both plants studied increased at the end of the growing season and during the winter. However, by processing and mechanical separation it is possible to produce fibres containing less moulds and bacteria than the whole stem. Enzymatic treatment encouraged the growth of moulds in fibres. Steam explosion reduced the amount of moulds in fibres. Dry thermal treatment used in this study did not markedly reduce the amount of microbes. In this project an emission measurement chamber was developed which was suitable for measurements of emissions from both mat type and loose fill type insulations, and capable of interdisciplinary sampling. In this study, the highest amounts of fungal emissions were in the range of 10^3 10^5 cfu/m^3 from the flax and hemp insulations at 90% RH of air. The fungal emissions from stone wool, glass wool and recycled paper insulations were below 10^2 cfu/m^3 even at 90% RH. Equally low values were obtained from bast fibrous materials in lower humidities (at 30% and 80% RH of air). After drying of moulded insulations at 30% RH, the amounts of emitted moulds were in all cases higher compared to the emissions at 90% RH before drying. The most common fungi in bast fibres were Penicillium and Rhizopus. The widest variety of different fungi was in the untreated hemp and linseed fibres and in the commercial loose-fill flax insulation. Penicillium, Rhizopus and Paecilomyces were the most tolerant to steam explosion. According to the literature, the most common fungi in building materials and indoor air are Penicillium, Aspergillus and Cladosporium, which were all found in some of the bast fibre materials in this study. As organic materials, hemp and flax fibres contain high levels of nutrients for microbial growth. The amount of microbes can be controlled and somewhat decreased by the processing methods presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

TRFLP (terminal restriction fragment length polymorphism) was used to assess whether management practices that improved disease suppression and/or yield in a 4-year ginger field trial were related to changes in soil microbial community structure. Bacterial and fungal community profiles were defined by presence and abundance of terminal restriction fragments (TRFs), where each TRF represents one or more species. Results indicated inclusion of an organic amendment and minimum tillage increased the relative diversity of dominant fungal populations in a system dependant way. Inclusion of an organic amendment increased bacterial species richness in the pasture treatment. Redundancy analysis showed shifts in microbial community structure associated with different management practices and treatments grouped according to TRF abundance in relation to yield and disease incidence. ANOVA also indicated the abundance of certain TRFs was significantly affected by farming system management practices, and a number of these TRFs were also correlated with yield or disease suppression. Further analyses are required to determine whether identified TRFs can be used as general or soil-type specific bio-indicators of productivity (increased and decreased) and Pythium myriotylum suppressiveness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Since its initial description as a Th2-cytokine antagonistic to interferon-alpha and granulocyte-macrophage colony-stimulating factor, many studies have shown various anti-inflammatory actions of interleukin-10 (IL-10), and its role in infection as a key regulator of innate immunity. Studies have shown that IL-10 induced in response to microorganisms and their products plays a central role in shaping pathogenesis. IL-10 appears to function as both sword and shield in the response to varied groups of microorganisms in its capacity to mediate protective immunity against some organisms but increase susceptibility to other infections. The nature of IL-10 as a pleiotropic modulator of host responses to microorganisms is explained, in part, by its potent and varied effects on different immune effector cells which influence antimicrobial activity. A new understanding of how microorganisms trigger IL-10 responses is emerging, along with recent discoveries of how IL-10 produced during disease might be harnessed for better protective or therapeutic strategies. In this review, we summarize studies from the past 5 years that have reported the induction of IL-10 by different classes of pathogenic microorganisms, including protozoa, nematodes, fungi, viruses and bacteria and discuss the impact of this induction on the persistence and/or clearance of microorganisms in the host.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to explore soil microbial activities related to C and N cycling and the occurrence and concentrations of two important groups of plant secondary compounds, terpenes and phenolic compounds, under silver birch (Betula pendula Roth), Norway spruce (Picea abies (L.) Karst) and Scots pine (Pinus sylvestris L.) as well as to study the effects of volatile monoterpenes and tannins on soil microbial activities. The study site, located in Kivalo, northern Finland, included ca. 70-year-old adjacent stands dominated by silver birch, Norway spruce and Scots pine. Originally the soil was very probably similar in all three stands. All forest floor layers (litter (L), fermentation layer (F) and humified layer (H)) under birch and spruce showed higher rates of CO2 production, greater net mineralisation of nitrogen and higher amounts of carbon and nitrogen in microbial biomass than did the forest floor layers under pine. Concentrations of mono-, sesqui-, di- and triterpenes were higher under both conifers than under birch, while the concentration of total water-soluble phenolic compounds as well as the concentration of condensed tannins tended to be higher or at least as high under spruce as under birch or pine. In general, differences between tree species in soil microbial activities and in concentrations of secondary compounds were smaller in the H layer than in the upper layers. The rate of CO2 production and the amount of carbon in the microbial biomass correlated highly positively with the concentration of total water-soluble phenolic compounds and positively with the concentration of condensed tannins. Exposure of soil to volatile monoterpenes and tannins extracted and fractionated from spruce and pine needles affected carbon and nitrogen transformations in soil, but the effects were dependent on the compound and its molecular structure. Monoterpenes decreased net mineralisation of nitrogen and probably had a toxic effect on part of the microbial population in soil, while another part of the microbes seemed to be able to use monoterpenes as a carbon source. With tannins, low-molecular-weight compounds (also compounds other than tannins) increased soil CO2 production and nitrogen immobilisation by soil microbes while the higher-molecular-weight condensed tannins had inhibitory effects. In conclusion, plant secondary compounds may have a great potential in regulation of C and N transformations in forest soils, but the real magnitude of their significance in soil processes is impossible to estimate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In boreal forests, microorganisms have a pivotal role in nutrient and water supply of trees as well as in litter decomposition and nutrient cycling. This reinforces the link between above-ground and below-ground communities in the context of sustainable productivity of forest ecosystems. In northern boreal forests, the diversity of microbes associated with the trees is high compared to the number of distinct tree species. In this thesis, the aim was to study whether conspecific tree individuals harbour different soil microbes and whether the growth of the trees and the community structure of the associated microbes are connected. The study was performed in a clonal field trial of Norway spruce, which was established in a randomized block design in a clear-cut area. Since out-planting in 1994, the spruce clones showed two-fold growth differences. The fast-growing spruce clones were associated with a more diverse community of ectomycorrhizal fungi than the slow-growing spruce clones. These growth performance groups also differed with respect to other aspects of the associated soil microorganisms: the species composition of ectomycorrhizal fungi, in the amount of extraradical fungal mycelium, in the structure of bacterial community associated with the mycelium, and in the structure of microbial community in the organic layer. The communities of fungi colonizing needle litter of the spruce clones in the field did not differ and the loss of litter mass after two-years decomposition was equal. In vitro, needles of the slow-growing spruce clones were colonized by a more diverse community of endophytic fungi that were shown to be significant needle decomposers. This study showed a relationship between the growth of Norway spruce clones and the community structure of the associated soil microbes. Spatial heterogeneity in soil microbial community was connected with intraspecific variation of trees. The latter may therefore influence soil biodiversity in monospecific forests.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Väitöskirjani käsittele mikrobien ja erilaisten kemikaalien rooleja saostumien ja biofilmien muodostumisessa paperi- ja kartonkikoneilla. "Saostuma" tässä työssä tarkoittaa kiinteän aineen kertymää konepinnoille tai rajapinnoille konekierroissa, jotka on tarkoitettu massasulppujen, lietteiden, vesien tai ilman kuljetukseen. Saostumasta tulee "biofilmi" silloin kun sen oleellinen rakennekomponentti on mikrobisolut tai niiden tuotteet. Väitöstyöni työhypoteesina oli, että i. tietämys saostumien koostumuksesta, sekä ii. niiden rakenteesta, biologisista, fysikaalis-kemiallisista ja teknisistä ominaisuuksista ohjaavat tutkijaa löytämään ympäristöä säästäviä keinoja estää epätoivottujen saostumien muodostus tai purkaa jo muodostuneita saostumia. Selvittääkseni saostumien koostumista ja rakennetta käytin monia erilaisia analytiikan työkaluja, kuten elektronimikroskopiaa, konfokaali-laser mikroskopiaa (CLSM), energiadispersiivistä röntgenanalyysiä (EDX), pyrolyysi kaasukromatografiaa yhdistettynä massaspektrometriaan (Py-GCMS), joninvaihtokromatografiaa, kaasukromatografiaa ja mikrobiologisia analyysejä. Osallistuin aktiivisesti innovatiivisen, valon takaisinsirontaan perustuvan sensorin kehittämistyöhön, käytettäväksi biofilmin kasvun mittaukseen suoraan koneen vesikierroista ja säiliöistä. Työni osoitti, että monet paperinvalmistuksessa käytetyistä kemikaaleista reagoivat keskenään tuottaen orgaanisia tahmakerroksia konekiertojen teräspinnoille. Löysin myös kerrostumia, jotka valomikroskooppisessa tarkastelussa oli tulkittu mikrobeiksi, mutta jotka elektronimikroskopia paljasti alunasta syntyneiksi, alumiinihydroksidiksi joka saostui pH:ssa 6,8 kiertokuitua käyttävän koneen viiravesistä. Monet paperintekijät käyttävät vieläkin alunaa kiinnitysaineena vaikka prosessiolot ovat muuttuneet happamista neutraaleiksi. Sitä pidetään paperitekijän "aspiriinina", mutta väitöstutkimukseni osoitti sen riskit. Löysin myös orgaanisia saostumia, joiden alkuperä oli aineiden, kuten pihkan, saippuoituminen (kalsium saippuat) niin että muodostui tahmankasvua ylläpitävä alusta monilla paperi- ja kartonkikoneilla. Näin solumuodoiltaan Deinococcus geothermalista muistuttavia bakteereita kasvamassa lujasti teräskoepalojen pintaan kiinnittyneinä pesäkkeinä, kun koepaloja upotettiin paperikoneiden vesikiertoihin. Nämä deinokokkimaiset pesäkkeet voivat toimia jalustana, tarttumisalustana muiden mikrobien massoille, joka selittäisi miksi saostumat yleisesti sisältävät deinokokkeja pienenä, muttei koskaan pääasiallisena rakenneosana. Kun paperikoneiden käyttämien vesien (raakavedet, lämminvesi, biologisesti puhdistettu jätevesi) laatua tutkitaan, mittausmenetelmällä on suuri merkitys. Koepalan upotusmenetelmällä todettu biofilmikasvu ja viljelmenetelmällä mitattu bakteerisaastuneisuus korreloivat toisiinsa huonosti etenkin silloin kun likaantumisessa oli mukana rihmamaiseti kasvavia bakteereja. Huoli ympäristöstä on pakottanut paperi- ja kartonkikoneiden vesikiertojen sulkemiseen. Vesien kierrätys ja prosessivesien uudelleenkäyttö nostavat prosessilämpötilaa ja lisäävät koneella kiertävien kolloidisten ja liuenneiden aineiden määriä. Tutkin kiertovesien pitoisuuksia kolmessa eriasteisesti suljetussa tehtaassa, joiden päästöt olivat 0 m3, 0,5 m3 ja 4 m3 jätevettä tuotetonnia kohden, perustuen puhdistetun jäteveden uudelleen käyttöön. Nollapäästöisellä tehtaalla kiertovesiin kertyi paljon orgaanisesti sidottua hiiltä (> 10 g L-1), etenkin haihtuvina happoina (maito-, etikka-, propioni- ja voi-). Myös sulfaatteja, klorideja, natriumia ja kalsiumia kertyi paljon, > 1 g L-1 kutakin. Pääosa (>40%) kaikista bakteereista oli 16S rRNA geenisekvenssianalyysien tulosten perusteella sukua, joskin etäistä (< 96%) ainoastaan Enterococcus cecorum bakteerille. 4 m3 päästävältä tehtaalta löytyi lisäksi Bacillus thermoamylovorans ja Bacillus coagulans. Tehtaiden saostumat sisälsivät arkkeja suurina pitoisuuksina, ≥ 108 g-1, mutta tunnistukseen riittävää sekvenssisamanlaisuutta löytyi vain yhteen arkkisukuun, Methanothrix. Tutkimustulokset osoittivat että tehtaan vesikiertojen sulkeminen vähensi rajusti mikrobiston monimuotoisuutta, muttei estänyt liuenneen aineen ja kiintoaineen mineralisoitumista.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Kangaroos ferment forage material in an enlarged forestomach analogous to the rumen, but in contrast to ruminants, they produce little or no methane. The objective of this study was to identify the dominant organisms and pathways involved in hydrogenotrophy in the kangaroo forestomach, with the broader aim of understanding how these processes are able to predominate over methanogenesis. Stable isotope analysis of fermentation end products and RNA stable isotope probing (RNA-SIP) were used to investigate the organisms and biochemical pathways involved in the metabolism of hydrogen and carbon dioxide in the kangaroo forestomach. Our results clearly demonstrate that the activity of bacterial reductive acetogens is a key factor in the reduced methane output of kangaroos. In in vitro fermentations, the microbial community of the kangaroo foregut produced very little methane, but produced a significantly greater proportion of acetate derived from carbon dioxide than the microbial community of the bovine rumen. A bacterial operational taxonomic unit closely related to the known reductive acetogen Blautia coccoides was found to be associated with carbon dioxide and hydrogen metabolism in the kangaroo foregut. Other bacterial taxa including members of the genera Prevotella, Oscillibacter and Streptococcus that have not previously been reported as containing hydrogenotrophic organisms were also significantly associated with metabolism of hydrogen and carbon dioxide in the kangaroo forestomach.The ISME Journal advance online publication, 13 March 2014; doi:10.1038/ismej.2014.25.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Florida manatee, Trichechus manatus latirostris, is a hindgut-fermenting herbivore. In winter, manatees migrate to warm water overwintering sites where they undergo dietary shifts and may suffer from cold-induced stress. Given these seasonally induced changes in diet, the present study aimed to examine variation in the hindgut bacterial communities of wild manatees overwintering at Crystal River, west Florida. Faeces were sampled from 36 manatees of known sex and body size in early winter when manatees were newly arrived and then in mid-winter and late winter when diet had probably changed and environmental stress may have increased. Concentrations of faecal cortisol metabolite, an indicator of a stress response, were measured by enzyme immunoassay. Using 454-pyrosequencing, 2027 bacterial operational taxonomic units were identified in manatee faeces following amplicon pyrosequencing of the 16S rRNA gene V3/V4 region. Classified sequences were assigned to eight previously described bacterial phyla; only 0.36% of sequences could not be classified to phylum level. Five core phyla were identified in all samples. The majority (96.8%) of sequences were classified as Firmicutes (77.3 ± 11.1% of total sequences) or Bacteroidetes (19.5 ± 10.6%). Alpha-diversity measures trended towards higher diversity of hindgut microbiota in manatees in mid-winter compared to early and late winter. Beta-diversity measures, analysed through permanova, also indicated significant differences in bacterial communities based on the season.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Microbial degradation of geraniol, citronellol, linalool and their corresponding acetates, structurally modified linalool and linalyl acetate, α-terpineol and β-myrcene are presented. Oxygenative and prototropic rearrangements are normally observed during the microbial metabolism of monoterpenes. Three types of oxygenation reactions are observed, namely, (a) allylic oxygenation (b) oxygenation on a double bond and (c) addition of water across the double bond. The studies indicate commonality in the reaction types or processes occurring during the metabolism of various related monoterpenes and also establish the convergence of degradative pathways at a central catabolic intermediate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present experiment was conducted to determine the efficiency of microbial protein production in the rumen and intake by cattle fed high-molasses diets. Intake and microbial crude protein (MCP) production were measured along with the concentration of rumen ammonia-nitrogen (N) and volatile fatty acids (VFA), pH and the rate of digestion of roughage in the rumen. Eight Brahman crossbred steers weighing 211 ± 19.3 (± s.d.) kg were used in a double 4 × 4 Latin square design. Steers were allocated to one of four total mixed rations: control (pangola hay only), 25M (25% molasses/urea mix + 75% hay), 50M (50% molasses/urea + 50% hay), and 75M (75% molasses/urea + 25% hay). The production and efficiency of production of MCP (EMCP) of the diet increased quadratically as the level of molasses in the diet increased. The EMCP from the molasses/urea mix was estimated as 166 g MCP/kg digestible organic matter (DOM), a relatively high value. Intake of dry matter (DM) and DOM increased quadratically, reaching a peak when molasses was ~50% (as fed) of the ration. Digestibility of DM increased quadratically and that of neutral detergent fibre decreased linearly with increasing level of molasses in the diet. Molasses inclusion in the diet had no effect on rumen pH, ammonia and VFA concentration in the rumen fluid, plasma urea-N, urine pH or ruminal fractional outflow rate of ytterbium-labelled particles and Cr-EDTA. It was concluded that a diet with a high level of molasses (>50%) and supplemented with adequate N had high EMCP, and that low MCP production was not a factor limiting intake or performance of cattle consuming high-molasses diets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present experiment was conducted to determine the efficiency of microbial protein production in the rumen and intake by cattle fed high-molasses diets. Intake and microbial crude protein (MCP) production were measured along with the concentration of rumen ammonia-nitrogen (N) and volatile fatty acids (VFA), pH and the rate of digestion of roughage in the rumen. Eight Brahman crossbred steers weighing 211 ± 19.3 (± s.d.) kg were used in a double 4 x 4 Latin square design. Steers were allocated to one of four total mixed rations: control (pangola hay only), 25M (25% molasses/urea mix + 75% hay), 50M (50% molasses/urea + 50% hay), and 75M (75% molasses/urea + 25% hay). The production and efficiency of production of MCP (EMCP) of the diet increased quadratically as the level of molasses in the diet increased. The EMCP from the molasses/urea mix was estimated as 166 g MCP/kg digestible organic matter (DOM), a relatively high value. Intake of dry matter (DM) and DOM increased quadratically, reaching a peak when molasses was ∼50% (as fed) of the ration. Digestibility of DM increased quadratically and that of neutral detergent fibre decreased linearly with increasing level of molasses in the diet. Molasses inclusion in the diet had no effect on rumen pH, ammonia and VFA concentration in the rumen fluid, plasma urea-N, urine pH or ruminal fractional outflow rate of ytterbium-labelled particles and Cr-EDTA. It was concluded that a diet with a high level of molasses (>50%) and supplemented with adequate N had high EMCP, and that low MCP production was not a factor limiting intake or performance of cattle consuming high-molasses diets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cattle consuming pastures low in protein have low liveweight gain due to low rumen degradable protein (RDP) supply and thus low microbial crude protein (MCP) production and efficiency of MCP production [EMCP, g MCP/kg digestible organic matter (DOM)]. Nitrogen supplements can increase MCP production and EMCP of cattle grazing low protein pastures. The objective of this study was to compare the effects of supplementation with a non-protein-N source (NPN), in this case urea and ammonium sulfate (US), with a single-cell algal protein source (Spirulina platensis), on intake, microbial protein supply and digestibility in cattle. Nine cannulated Bos indicus steers [initial liveweight 250.1 ± 10.86 (s.d.) kg] were fed Mitchell grass hay (Astrebla spp; 6.1 g N, 746 g NDF/kg DM) ad libitum and were supplied with increasing amounts of US (0, 6, 13, 19 and 33 g US DM/kg hay DM) or Spirulina 0, 0.5, 1.4, 2.5 and 6.1 g Spirulina DM/kg W.day in an incomplete Latin square design. The response of MCP production and EMCP to increasing amounts of the two supplements was different, with a greater response to Spirulina evident. The MCP production was predicted to peak at 140 and 568 g MCP/day (0.64 and 2.02 g MCP/kg W.day) for the US and Spirulina supplements, respectively. The highest measured EMCP were 92 and 166 g MCP/kg DOM for the US and Spirulina treatments at 170 and 290 g RDP/kg DOM, respectively, or a Spirulina intake of 5.7 g DM/kg W.day. Increasing RDP intake from US and Spirulina resulted in an increase in Mitchell grass hay intake and rumen NH3-N concentration and reduced the retention time of liquid and particulate markers and digesta DM, NDF and lignin in the rumen with greater changes due to Spirulina. Total DM intake peaked at a Spirulina supplement level of 4.6 g Spirulina DM/kg W.day with a 2.3-fold higher DOM intake than Control steers. Rumen NH3-N concentrations reached 128 and 264 mg NH3-N/L for the US and Spirulina treatments with a significant increase in the concentration of branched-chain fatty acids for the Spirulina treatment. The minimum retention time of liquid (Cr-EDTA; 23 and 13 h) and particulate (Yb; 34 and 22 h) markers in the rumen were significantly lower for Spirulina compared with US and lower than unsupplemented animals at 24 and 34 h for Cr-EDTA and Yb, respectively. Spirulina could be provided safely at much higher N intakes than NPN supplements. The results suggest that, at an equivalent RDP supply, Spirulina provided greater increases than US in MCP production, EMCP and feed intake of Bos indicus cattle consuming low protein forage and could also be fed safely at higher levels of N intake.