837 resultados para Metal Forming
Resumo:
Continuous and long-pulse lasers have been extensively used for the forming of metal sheets for macroscopic mechanical applications. However, for the manufacturing of Micro-Mechanical Systems (MMS), the applicability of such type of lasers is limited by the long relaxation time of the thermal fields responsible for the forming phenomena. As a consequence, the final sheet deformation state is attained only after a certain time, what makes the generated internal residual stress fields more dependent on ambient conditions and might difficult the subsequent assembly process. The use of short pulse (ns) lasers provides a suitable parameter matching for the laser forming of an important range of sheet components used in MEMS. The short interaction time scale required for the predominantly mechanic (shock) induction of deformation residual stresses allows the successful processing of components in a medium range of miniaturization (particularly important according to its frequent use in such systems). In the present paper, Laser Shock Micro-Forming (LSμF) is presented as an emerging technique for Microsystems parts shaping and adjustment along with a discussion on its physical foundations and practical implementation possibilities developed by the authors.
Resumo:
During the fracture of nanocontacts gold spontaneously forms freely suspended chains of atoms, which is not observed for the isoelectronic noble metals Ag and Cu. Au also differs from Ag and Cu in forming reconstructions at its low-index surfaces. Using mechanically controllable break junctions we show that all the 5d metals that show similar reconstructions (Ir, Pt, and Au) also form chains of atoms, while both properties are absent in the 4d neighbor elements (Rh, Pd, and Ag), indicating a common origin for these two phenomena. A competition between s and d bonding is proposed as an explanation.
Resumo:
Mode of access: Internet.
Resumo:
Hookworms feed on blood, but the mechanism by which they lyse ingested erythrocytes is unknown. Here we show that Ancylostoma caninum, the common dog hookworm, expresses a detergent soluble, haemolytic factor. Activity was identified in both adult and larval stages, was heat-stable and unaffected by the addition of protease inhibitors, metal ions, chelators and reducing agents. Trypsin ablated lysis indicating that the haemolysin is a protein. A closely migrating doublet of hookworm proteins with apparent molecular weights of 60-65 kDa bound to the erythrocyte membrane after lysis of cells using both unlabeled and biotinylated detergent-solubilised hookworm extracts. In addition, separation of detergent-soluble parasite extracts using strong cation-exchange chromatography, resulted in purification of 60-65 kDa proteins with trypsin-sensitive haemolytic activity. Erythrocytes lysed with particulate, buffer-insoluble worm extracts were observed using scanning electron microscopy and appeared as red cell ghosts with approximately 100 nm diameter pores formed in the cell membranes. Red blood cell ghosts remained visible indicating that lysis was likely caused by pore formation and followed by osmotic disruption of the cell. (C) 2004 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
The work described in this thesis was conducted with the aim of: 1) investigating the binding capabilities of calix[4]arene-functionalized microcantilevers towards specific metal ions and 2) developing a new16-microcantilever array sensing system for the rapid, and simultaneous detection of metal ions in fresh water. Part I of this thesis reports on the use of three new bimodal calix[4]arenes (methoxy, ethoxy and crown) as potential host/guest sensing layers for detecting selected ions in dilute aqueous solutions using single microcantilever experimental system. In this work it was shown that modifying the upper rim of the calix[4]arenes with a thioacetate end group allow calix[4]arenes to self-assemble on Au(111) forming complete highly ordered monolayers. It was also found that incubating the microcantilevers coated with 5 nm of Inconel and 40 nm of Au for 1 h in a 1.0 M solution of calix[4]arene produced the highest sensitivity. Methoxy-functionalized microcantilevers showed a definite preference for Ca²⁺ ions over other cationic guests and were able to detect trace concentration as low as 10⁻¹² M in aqueous solutions. Microcantilevers modified with ethoxy calix[4]arene displayed their highest sensitivity towards Sr²⁺ and to a lesser extent Ca²⁺ ions. Crown calix[4]arene-modified microcantilevers were however found to bind selectively towards Cs⁺ ions. In addition, the counter anion was also found to contribute to the deflection. For example methoxy calix[4]arene-modified microcantilever was found to be more sensitive to CaCl₂ over other water-soluble calcium salts such as Ca(NO₃)₂ , CaBr₂ and CaI₂. These findings suggest that the response of calix[4]arene-modified microcantilevers should be attributed to the target ionic species as a whole instead of only considering the specific cation and/or anion. Part II presents the development of a 16-microcantilever sensor setup. The implementation of this system involved the creation of data analysis software that incorporates data from the motorized actuator and a two-axis photosensitive detector to obtain the deflection signal originating from each individual microcantilever in the array. The system was shown to be capable of simultaneous measurements of multiple microcantilevers with different coatings. A functionalization unit was also developed that allows four microcantilevers in the array to be coated with an individual sensing layer one at the time. Because of the variability of the spring constants of different cantilevers within the array, results presented were quoted in units of surface stress unit in order to compare values between the microcantilevers in the array.
Resumo:
The major part of this thesis concerns the development of catalytic methodologies based on palladium nanoparticles immobilized on aminopropyl-functionalized siliceous mesocellular foam (Pd0-AmP-MCF). The catalytic activity of the precursor to the nanocatalyst, PdII-AmP-MCF is also covered by this work. In the first part the application of Pd0-AmP-MCF in Suzuki-Miyaura cross-coupling reactions and transfer hydrogenation of alkenes under microwave irradiation is described. Excellent reactivity was observed and a broad range of substrates were tolerated for both transformations. The Pd0-AmP-MCF exhibited high recyclability as well as low metal leaching in both cases. The aim of the second part was to evaluate the catalytic efficiency of the closely related PdII-AmP-MCF for cycloisomerization of various acetylenic acids. The catalyst was able to promote formation of lactones under mild conditions using catalyst loadings of 0.3 - 0.5 mol% at temperatures of up to 50 oC in the presence of Et3N. By adding 1,4-benzoquinone to the reaction, the catalyst could be recycled four times without any observable decrease in the activity. The selective arylation of indoles at the C-2 position using Pd-AmP-MCF and symmetric diaryliodonium salts is presented in the third part. These studies revealed that Pd0-AmP-MCF was more effective than PdII-AmP-MCF for this transformation. Variously substituted indoles as well as diaryliodonium salts were tolerated, giving arylated indoles in high yields within 15 h at 20 - 50 oC in H2O. Only very small amounts of Pd leaching were observed and in this case the catalyst exhibited moderate recyclability. The final part of the thesis describes the selective hydrogenation of the C=C in different α,β-unsaturated systems. The double bond was efficiently hydrogenated in high yields both under batch and continuous-flow conditions. High recyclability and low metal leaching were observed in both cases.
Resumo:
How can we control the experimental conditions towards the isolation of specific structures? Why do particular architectures form? These are some challenging questions that synthetic chemists try to answer, specifically within polyoxometalate (POM) chemistry, where there is still much unknown regarding the synthesis of novel molecular structures in a controlled and predictive manner. This work covers a wide range of POM chemistry, exploring the redox self-assembly of polyoxometalate clusters, using both “one-pot”, flow and hydrothermal conditions. For this purpose, different vanadium, molybdenum and tungsten reagents, heteroatoms, inorganic salts and reducing agents have been used. The template effect of lone-pair containing pyramidal heteroatoms has been investigated. Efforts to synthesize new POM clusters displaying pyramidal heteroanions (XO32-, where X= S, Se, Te, P) are reported. The reaction of molybdenum with vanadium in the presence of XO32- heteroatoms is explored, showing how via the cation and experimental control it is possible to direct the self-assembly process and to isolate isostructural compounds. A series of four isostructural (two new, namely {Mo11V7P} and {Mo11V7Te} and two already known, namely {Mo11V7Se} and {Mo11V7S} disordered egg-shaped Polyoxometalates have been reported. The compounds were characterized by X-ray structural analysis, TGA, UV-Vis, FT-IR, Elemental and Flame Atomic Absorption Spectroscopy (FAAS) analysis and Inductively Coupled Plasma Optical Emission Spectroscopy (ICP-OES). Cyclic Voltammetry measurements have been carried out in all four compounds showing the effect of the ionic density of the heteroatom on the potential. High-Resolution ESI-MS studies have revealed that the structures retain their integrity in solution. Efforts to synthesize new mixed-metal compounds led to isolation, structural, and electronic characterization of the theoretically predicted, but experimentally elusive δ-isomer of the Keggin polyoxometalate cluster anion, {H2W4V9O33(C6H13NO3)}, by the reaction of tungstate(VI) and vanadium(V) with triethanolammonium ions (TEAH), acting as a tripodal ligand grafted to the surface of the cluster. Control experiments (in the absence of the organic compound) have proven that the tripodal ligand plays crucial role on the formation of the isomer. The six vanadium metal centres, which consist the upper part of the cluster, are bonded to the “capping” TEA tripodal ligand. This metal-ligand bonding directs and stabilises the formation of the final product. The δ-Keggin species was characterized by single-crystal X-ray diffraction, FT-IR, UV-vis, NMR and ESI-MS spectrometry. Electronic structure and structure-stability correlations were evaluated by means of DFT calculations. The compounds exhibited photochromic properties by undergoing single-crystal-to-single-crystal (SC-SC) transformations and changing colour under light. Non-conventional synthetic approaches are also used for the synthesis of the POM clusters comparing the classical “one-pot” reaction conditions and exploring the synthetic parameters of the synthesis of POM compounds. Reactions under hydrothermal and flow conditions, where single crystals that depend on the solubility of the minerals under hot water and high pressure can be synthesized, resulted in the isolation of two isostructural compounds, namely, {Mo12V3Te5}. The compound isolated from a continuous processing method, crystallizes in a hexagonal crystal system, forming a 2D porous plane net, while the compound isolated using hard experimental conditions (high temperature and pressure) crystallizes in monoclinic system, resulting in a different packing configuration. Utilizing these alternative synthetic approaches, the most kinetically and thermodynamically compounds would possibly be isolated. These compounds were characterised by single-crystal X-ray diffraction, FT-IR and UV-vis spectroscopy. Finally, the redox-controlled driven oscillatory template exchange between phosphate (P) and vanadate (V) anions enclosed in an {M18O54(XO4)2} cluster is further investigated using UV-vis spectroscopy as a function of reaction time, showed that more than six complete oscillations interconverting the capsule species present in solution from {P2M18} to {V2M18} were possible, provided that a sufficient concentration of the TEA reducing agent was present in solution. In an effort to investigate the periodicity of the exchange of the phosphate and vanadate anions, time dependent Uv-vis measurements were performed for a period at a range of 170-550 hours. Different experimental conditions were also applied in order to investigate the role of the reducing agent, as well as the effect of other experimental variables on the oscillatory system.
Resumo:
Silicon photoanodes protected by atomic layer deposited (ALD) TiO2 show promise as components of water splitting devices that may enable the large-scale production of solar fuels and chemicals. Minimizing the resistance of the oxide corrosion protection layer is essential for fabricating efficient devices with good fill factor. Recent literature reports have shown that the interfacial SiO2 layer, interposed between the protective ALD-TiO2 and the Si anode, acts as a tunnel oxide that limits hole conduction from the photoabsorbing substrate to the surface oxygen evolution catalyst. Herein, we report a significant reduction of bilayer resistance, achieved by forming stable, ultrathin (<1.3 nm) SiO2 layers, allowing fabrication of water splitting photoanodes with hole conductances near the maximum achievable with the given catalyst and Si substrate. Three methods for controlling the SiO2 interlayer thickness on the Si(100) surface for ALD-TiO2 protected anodes were employed: (1) TiO2 deposition directly on an HF-etched Si(100) surface, (2) TiO2 deposition after SiO2 atomic layer deposition on an HF-etched Si(100) surface, and (3) oxygen scavenging, post-TiO2 deposition to decompose the SiO2 layer using a Ti overlayer. Each of these methods provides a progressively superior means of reliably thinning the interfacial SiO2 layer, enabling the fabrication of efficient and stable water oxidation silicon anodes.
Resumo:
Acid drainage influence on the water and sediment quality was investigated in a coal mining area (southern Brazil). Mine drainage showed pH between 3.2 and 4.6 and elevated concentrations of sulfate, As and metals, of which, Fe, Mn and Zn exceeded the limits for the emission of effluents stated in the Brazilian legislation. Arsenic also exceeded the limit, but only slightly. Groundwater monitoring wells from active mines and tailings piles showed pH interval and chemical concentrations similar to those of mine drainage. However, the river and ground water samples of municipal public water supplies revealed a pH range from 7.2 to 7.5 and low chemical concentrations, although Cd concentration slightly exceeded the limit adopted by Brazilian legislation for groundwater. In general, surface waters showed large pH range (6 to 10.8), and changes caused by acid drainage in the chemical composition of these waters were not very significant. Locally, acid drainage seemed to have dissolved carbonate rocks present in the local stratigraphic sequence, attenuating the dispersion of metals and As. Stream sediments presented anomalies of these elements, which were strongly dependent on the proximity of tailings piles and abandoned mines. We found that precipitation processes in sediments and the dilution of dissolved phases were responsible for the attenuation of the concentrations of the metals and As in the acid drainage and river water mixing zone. In general, a larger influence of mining activities on the chemical composition of the surface waters and sediments was observed when enrichment factors in relation to regional background levels were used.
Resumo:
Friction and triboelectrification of materials show a strong correlation during sliding contacts. Friction force fluctuations are always accompanied by two tribocharging events at metal-insulator [e.g., polytetrafluoroethylene (PTFE)] interfaces: injection of charged species from the metal into PTFE followed by the flow of charges from PTFE to the metal surface. Adhesion maps that were obtained by atomic force microscopy (AFM) show that the region of contact increases the pull-off force from 10 to 150 nN, reflecting on a resilient electrostatic adhesion between PTFE and the metallic surface. The reported results suggest that friction and triboelectrification have a common origin that must be associated with the occurrence of strong electrostatic interactions at the interface.
Resumo:
A versatile and metal-free approach for the synthesis of carbocycles and of heterocycles bearing seven- and eight-membered rings is described. The strategy is based on ring expansion of 1-vinylcycloalkanols (or the corresponding silyl or methyl ether) mediated by the hypervalent iodine reagent HTIB (PhI(OH)OTs). Reaction conditions can be easily adjusted to give ring expansion products bearing different functional groups. A route to medium-ring lactones was also developed.
Resumo:
The presence of calcium, iron, and zinc bound to human milk secretory IgA (sIgA) was investigated. The sIgA components were first separated by two-dimensional polyacrylamide gel electrophoresis and then identified by electrospray ionization-tandem mass spectrometry (ESI MS MS). The metal ions were detected by flame atomic absorption spectrometry after acid mineralization of the spots. The results showed eight protein spots corresponding to the IgA heavy chain constant region. Another spot was identified as the transmembrane secretory component. Calcium was bound to both the transmembrane component and the heavy chain constant region, while zinc was bound to the heavy chain constant region and iron was not bound with the identified proteins. The association of a metal ion with a protein is important for a number of reasons, and therefore, the findings of the present study may lead to a better understanding of the mechanisms of action and of additional roles that sIgA and its components play in human milk.
Resumo:
The research approaches recycling of urban waste compost (UWC) as an alternative fertilizer for sugarcane crop and as a social and environmental solution to the solids residuals growth in urban centers. A mathematical model was used in order to know the metal dynamics as decision support tool, aiming to establish of criteria and procedures for UWC's safe use, limited by the amount of heavy metal. A compartmental model was developed from experimental data in controlled conditions and partially checked with field data. This model described the heavy metal transference in the system soil-root-aerial portion of sugarcane plants and concluded that nickel was metal to be concern, since it takes approximately three years to be attenuated in the soil, reaching the aerial portions of the plant at high concentrations. Regarding factors such as clay content, oxide level and soil pH, it was observed that for soil with higher buffering capacity, the transfer of the majority of the metals was slower. This model may become an important tool for the attainment of laws regarding the UWC use, aiming to reduce environment contamination the waste accumulation and production costs.
Resumo:
Universidade Estadual de Campinas . Faculdade de Educação Física
Resumo:
One of the most important properties of artificial teeth is the abrasion wear resistance, which is determinant in the maintenance of the rehabilitation's occlusal pattern. OBJECTIVES: This in vitro study aims to evaluate the abrasion wear resistance of 7 brands of artificial teeth opposed to two types of antagonists. MATERIAL AND METHODS: Seven groups were prepared with 12 specimens each (BIOLUX & BL, TRILUX & TR, BLUE DENT & BD, BIOCLER & BC, POSTARIS & PO, ORTHOSIT & OR, GNATHOSTAR & GN), opposed to metallic (M & nickel-chromium alloy), and to composite antagonists (C & Solidex indirect composite). A mechanical loading device was used (240 cycles/min, 4 Hz speed, 10 mm antagonist course). Initial and final contours of each specimen were registered with aid of a profile projector (20x magnification). The linear difference between the two profiles was measured and the registered values were subjected to ANOVA and Tukey's test. RESULTS: Regarding the antagonists, only OR (M = 10.45 ± 1.42 µm and C = 2.77 ± 0.69 µm) and BC (M = 6.70 ± 1.37 µm and C = 4.48 ± 0.80 µm) presented statistically significant differences (p < 0.05). Best results were obtained with PO (C = 2.33 ± 0.91 µm and M = 1.78 ± 0.42 µm), followed by BL (C = 3.70 ± 1.32 µm and M = 3.70 ± 0.61 µm), statistically similar for both antagonists (p>0.05). Greater result variance was obtained with OR, which presented the worse results opposed to Ni-Cr (10.45 ± 1.42 µm), and results similar to the best ones against composite (2.77 ± 0.69 µm). CONCLUSIONS: Within the limitations of this study, it may be concluded that the antagonist material is a factor of major importance to be considered in the choice of the artificial teeth to be used in the prosthesis.