995 resultados para Mediterranean studies
Resumo:
Inflammation is involved in cardiovascular diseases. Some studies have found that the Mediterranean diet (MD) can reduce serum concentrations of inflammation markers. However, none of these studies have analyzed the influence of genetic variability in such a response. Our objective was to study the effect of the -765G.C polymorphism in the cyclooxygenase-2 (COX-2) gene and the -174G.C polymorphism in the interleukin-6 (IL-6) gene on serum concentrations of IL-6, C-reactive protein, intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule-1 as well as their influence on the response toa nutritional interventionwithMD.An intervention study ina high cardiovascular riskMediterranean population (314 men and 407 women) was undertaken. Participants were randomly assigned to consume a low-fat control diet or a MD supplementedwith virgin olive oil ornuts.Measureswereobtained at baseline and after a 3-mointervention period.At baseline, the COX-2 -765G.C polymorphismwas associated with lower serum IL-6 (5.85 6 4.82 in GG vs. 4.74 6 4.14 ng/L in C-allele carriers; P ¼ 0.002) and ICAM-1 (265.8 6 114.8 in GG vs. 243.0 6 107.1 mg/L in C-carriers; P ¼ 0.018) concentrations. These differences remained significant aftermultivariate adjustment. The IL-6 -174G.C polymorphism was associatedwith higher (CC vs. G-carriers) serumICAM-1concentrations in bothmenandwomenandwithhigherserumIL-6 concentrations inmen.Following the dietary intervention, no significant gene x diet interactions were found. In conclusion, although COX-2 -765G.C and IL-6 -174G.C polymorphismswere associatedwith inflammation, consuming aMD(either supplemented with virgin olive oil or nuts) reduced the concentration of inflammation markers regardless of these polymorphisms.
Resumo:
Freshwater species worldwide are experiencing dramatic declines partly attributable to ongoing climate change. It is expected that the future effects of climate change could be particularly severe in mediterranean climate (med-) regions, which host many endemic species already under great stress from the high level of human development. In this article, we review the climate and climate-induced changes in streams of med-regions and the responses of stream biota, focusing on both observed and anticipated ecological responses. We also discuss current knowledge gaps and conservation challenges. Expected climate alterations have already been observed in the last decades, and include: increased annual average air temperatures; decreased annual average precipitation; hydrologic alterations; and an increase in frequency, intensity and duration of extreme events, such as floods, droughts and fires. Recent observations, which are concordant with forecasts built, show stream biota of med-regions when facing climate changes tend to be displaced towards higher elevations and upper latitudes, communities tend to change their composition and homogenize, while some life-history traits seem to provide biota with resilience and resistance to adapt to the new conditions (as being short-lived, small, and resistant to low streamflow and desiccation). Nevertheless, such responses may be insufficient to cope with current and future environmental changes. Accurate forecasts of biotic changes and possible adaptations are difficult to obtain in med-regions mainly because of the difficulty of distinguishing disturbances due to natural variability from the effects of climate change, particularly regarding hydrology. Long-term studies are needed to disentangle such variability and improve knowledge regarding the ecological responses and the detection of early warning signals to climate change. Investments should focus on taxa beyond fish and macroinvertebrates, and in covering the less studied regions of Chile and South Africa. Scientists, policy makers and water managers must be involved in the climate change dialogue because the freshwater conservation concerns are huge.
Resumo:
In Chile, mediterranean climate conditions only occur in the Central Zone (ChMZ). Despite its small area, this mediterranean climate region (med-region) has been recognised as a hotspot for biodiversity. However, in contrast to the rivers of other med-regions, the rivers in the ChMZ have been studied infrequently, and knowledge of their freshwater biodiversity is scarce and fragmented. We gathered information on the freshwater biodiversity of ChMZ, and present a review of the current knowledge of the principal floral and faunal groups. Existing knowledge indicates that the ChMZ has high levels of endemism, with many primitive species being of Gondwanan origin. Although detailed information is available on most floral groups, most faunal groups remain poorly known. In addition, numerous rivers in the ChMZ remain completely unexplored. Taxonomic specialists are scarce, and the information available on freshwater biodiversity has resulted from studies with objectives that did not directly address biodiversity issues. Research funding in this med-region has a strong applied character and is not focused on the knowledge of natural systems and their biodiversity. Species conservation policies are urgently required in this highly diverse med-region, which is also the most severely impacted and most populated region of the country.
Resumo:
Understanding the factors controlling fine root respiration (FRR) at different temporal scales will help to improve our knowledge about the spatial and temporal variability of soil respiration (SR) and to improve future predictions of CO2 effluxes to the atmosphere. Here we present a comparative study of how FRR respond to variability in soil temperature and moisture in two widely spread species, Scots pines (Pinus sylvestris L.) and Holm-oaks (HO; Quercus ilex L.). Those two species show contrasting water use strategies during the extreme summer-drought conditions that characterize the Mediterranean climate. The study was carried out on a mixed Mediterranean forest where Scots pines affected by drought induced die-back are slowly being replaced by the more drought resistant HO. FRR was measured in spring and early fall 2013 in excised roots freshly removed from the soil and collected under HO and under Scots pines at three different health stages: dead (D), defoliated (DP) and non-defoliated (NDP). Variations in soil temperature, soil water content and daily mean assimilation per tree were also recorded to evaluate FRR sensibility to abiotic and biotic environmental variations. Our results show that values of FRR were substantially lower under HO (1.26 ± 0.16 microgram CO2 /groot·min) than under living pines (1.89 ± 0.19 microgram CO2 /groot·min) which disagrees with the similar rates of soil respiration previously observed under both canopies and suggest that FRR contribution to total SR varies under different tree species. The similarity of FRR rates under HO and DP furthermore confirms other previous studies suggesting a recent Holm-oak root colonization of the gaps under dead trees. A linear mixed effect model approach indicated that seasonal variations in FRR were best explained by soil temperature (p<0.05) while soil moisture was not exerting any direct control over FRR, despite the low soil moisture values during the summer sampling. Plant assimilation rates were positively related to FRR explaining part of the observed variability (p<0.01). However the positive relations of FRR with plant assimilation occurred mainly during spring, when both soil moisture and plant assimilation rates were higher. Our results finally suggest that plants might be able to maintain relatively high rates of FRR during the sub-optimal abiotic and biotic summer conditions probably thanks to their capacity to re-mobilize carbon reserves and their capacity to passively move water from moister layers to upper layers with lower water potentials (where the FR were collected) by hydraulic lift.
Resumo:
Emerging markets of Northern Africa and Turkey provide growth opportunities for logistics service companies in the middle of low growth environment of European Union. The purpose of this research is to explore and analyze the risk factors in container shipping industry and third party logistics (3PL) services. The research empirically examined the risk factors, which are related within the interaction between these two parties in emerging markets of Mediterranean area. The previous studies have provided a valuable insight into the operational risks faced by container shipping industries. However, most of these studies have focused on one or several operational risk factors from a single point of view, and no studies have inclusively examined the possible operational risks faced in the container shipping industry from dual perspective of 3PL provider and its customers. A questionnaire has been deployed to collect related data; and the impacts of the risks were then be assessed and ranked using the method of risk mapping. Respondents were located in Turkey, Algeria, Tunisia, and Libya. Research presents the most important risk factors identified, and compares them between 3PL provider and its customers. The research also provide some risk mitigation strategies for the key risk factors, and tried to figure out a common risk picture, which guides the managers in both sides to have a better decisions and as a result, improve the performance of the container shipping operations. Challenge during project execution time was that customers identified vast amount of more risks than what was the case with logistics service operator.
Resumo:
The utilization and management of arbuscular mycorrhiza (AM) symbiosis may improve production and sustainability of the cropping system. For this purpose, native AM fungi (AMF) were sought and tested for their efficiency to increase plant growth by enhanced P uptake and by alleviation of drought stress. Pot experiments with safflower (Carthamus tinctorius) and pea (Pisum sativum) in five soils (mostly sandy loamy Luvisols) and field experiments with peas were carried out during three years at four different sites. Host plants were grown in heated soils inoculated with AMF or the respective heat sterilized inoculum. In the case of peas, mutants resistant to AMF colonization were used as non-mycorrhizal controls. The mycorrhizal impact on yields and its components, transpiration, and P and N uptake was studied in several experiments, partly under varying P and N levels and water supply. Screening of native AMF by most probable number bioassays was not very meaningful. Soil monoliths were placed in the open to simulate field conditions. Inoculation with a native AMF mix improved grain yield, shoot and leaf growth variables as compared to control. Exposed to drought, higher soil water depletion of mycorrhizal plants resulted in a haying-off effect. The growth response to this inoculum could not be significantly reproduced in a subsequent open air pot experiment at two levels of irrigation and P fertilization, however, safflower grew better at higher P and water supply by multiples. The water use efficiency concerning biomass was improved by the AMF inoculum in the two experiments. Transpiration rates were not significantly affected by AM but as a tendency were higher in non-mycorrhizal safflower. A fundamental methodological problem in mycorrhiza field research is providing an appropriate (negative) control for the experimental factor arbuscular mycorrhiza. Soil sterilization or fungicide treatment have undesirable side effects in field and greenhouse settings. Furthermore, artificial rooting, temperature and light conditions in pot experiments may interfere with the interpretation of mycorrhiza effects. Therefore, the myc- pea mutant P2 was tested as a non-mycorrhizal control in a bioassay to evaluate AMF under field conditions in comparison to the symbiotic isogenetic wild type of var. FRISSON as a new integrative approach. However, mutant P2 is also of nod- phenotype and therefore unable to fix N2. A 3-factorial experiment was carried out in a climate chamber at high NPK fertilization to examine the two isolines under non-symbiotic and symbiotic conditions. P2 achieved the same (or higher) biomass as wild type both under good and poor water supply. However, inoculation with the AMF Glomus manihot did not improve plant growth. Differences of grain and straw yields in field trials were large (up to 80 per cent) between those isogenetic pea lines mainly due to higher P uptake under P and water limited conditions. The lacking N2 fixation in mutants was compensated for by high mineral N supply as indicated by the high N status of the pea mutant plants. This finding was corroborated by the results of a major field experiment at three sites with two levels of N fertilization. The higher N rate did not affect grain or straw yields of the non-fixing mutants. Very efficient AMF were detected in a Ferric Luvisol on pasture land as revealed by yield levels of the evaluation crop and by functional vital staining of highly colonized roots. Generally, levels of grain yield were low, at between 40 and 980 kg ha-1. An additional pot trial was carried out to elucidate the strong mycorrhizal effect in the Ferric Luvisol. A triplication of the plant equivalent field P fertilization was necessary to compensate for the mycorrhizal benefit which was with five times higher grain yield very similar to that found in the field experiment. However, the yield differences between the two isolines were not always plausible as the evaluation variable because they were also found in (small) field test trials with apparently sufficient P and N supply and in a soil of almost no AMF potential. This similarly occurred for pea lines of var. SPARKLE and its non-fixing mycorrhizal (E135) and non-symbiotic (R25) isomutants, which were tested in order to exclude experimentally undesirable benefits by N2 fixation. In contrast to var. FRISSON, SPARKLE was not a suitable variety for Mediterranean field conditions. This raises suspicion putative genetic defects other than symbiotic ones may be effective under field conditions, which would conflict with the concept of an appropriate control. It was concluded that AMF resistant plants may help to overcome fundamental problems of present research on arbuscular mycorrhiza, but may create new ones.
Predictive vegetation mapping in the Mediterranean context: Considerations and methodological issues
Resumo:
The need to map vegetation communities over large areas for nature conservation and to predict the impact of environmental change on vegetation distributions, has stimulated the development of techniques for predictive vegetation mapping. Predictive vegetation studies start with the development of a model relating vegetation units and mapped physical data, followed by the application of that model to a geographic database and over a wide range of spatial scales. This field is particularly important for identifying sites for rare and endangered species and locations of high biodiversity such as many areas of the Mediterranean Basin. The potential of the approach is illustrated with a mapping exercise in the alti-meditterranean zone of Lefka Ori in Crete. The study established the nature of the relationship between vegetation communities and physical data including altitude, slope and geomorphology. In this way the knowledge of community distribution was improved enabling a GIS-based model capable of predicting community distribution to be constructed. The paper describes the development of the spatial model and the methodological problems of predictive mapping for monitoring Mediterranean ecosystems. The paper concludes with a discussion of the role of predictive vegetation mapping and other spatial techniques, such as fuzzy mapping and geostatistics, for improving our understanding of the dynamics of Mediterranean ecosystems and for practical management in a region that is under increasing pressure from human impact.
Resumo:
The Mediterranean region is one of the major centres of origin and diversification of cultivated plants and many crop wild relatives are found there. In addition, many native species are still widely harvested from the wild for food, medicine and other uses and some of these have potential for development as alternative crop especially in marginal zones. While there have been several recent initiatives that address the cataloguing and conservation of these species, such as the Network on Identification, Conservation and Use of Wild Plants in the Mediterranean Region (MEDUSA and the Bioversity International (IPGRI) studies on Underutilized Mediterranean Species (VMS), no comprehensive assessment has yet been made and little work undertaken on their agricultural potential. It has been confidently predicted that consequences of global change in the Mediterranean region - population movements and migrations, changes in disturbance regimes, and climate change - will be serious. One the one hand, this will affect the survival prospects of many of these underutilized species and on the other hand it will enhance their importance as the source of potential new crop germplasm. The conservation and availability of genetic diversity of both crops and underutilized species is essential if we are to be able to meet the increasing demand for food and other crops that will be adapted to the new ecoclimatic envelopes that will develop in the region as a consequence of global change. The rapid rate of climatic and other change that is expected adds urgency to the task of assessing, conserving and sustainably using this rich diversity of wild species of economic value in the region but new strategies will be need to be developed to achieve this. The Mediterranean region has the potential of becoming a major source of new crop development in the coming decades.
Resumo:
Dose–response experiments were conducted in glasshouse pot experiments to investigate the selectivity of oxadiargyl, a recently introduced herbicide, in direct-seeded rice under both aerobic and anaerobic conditions. Crop sensitivity to oxadiargyl was comparatively greater for wet-seeded (anaerobic) than for dry-seeded rice (aerobic). Likewise, greater efficacy against Echinochloa crus-galli (L.) was also observed under anaerobic conditions. These results indicate greater activity of oxadiargyl under anaerobic conditions, but that application pre-sowing with subsequent flooding would reduce selectivity in wet-seeded rice. The results are discussed in relation to rice production in Mediterranean agriculture.
Resumo:
In this paper, I address the "wider issues Both That Affect Floristic studies today and how They Are Likely to Develop in the Future, And The Problems That special concern in the Mediterranean region particularism. A survey of published floristic studies is given for the Mediterranean and the Middle East, and the desirability of applying electronic web-based preparation and publication of floristic and taxonomic projects is considered, with special reference to the Euro + Med PlantBase project. A Survey of Published Studies Floristic IS Given for the Mediterranean and the Middle East, and the Desirability of Applying web-based electronic preparation and publication of Floristic and Taxonomic Project is regarded, with Special Reference To The Euro + Med project PlantBase. A new paradigm for taxonomy, and a plan of action for Mediterranean floristic studies are proposed. A New Paradigm for taxonomy, and a plan of action for Mediterranean Floristic studies are Proposed.
Resumo:
Palaeoproxy records alone are seldom sufficient to provide a full assessment of regional palaeoclimates. To better understand the possible changes in the Mediterranean climate during the Holocene, a series of palaeoclimate integrations for periods spanning the last 12 000 years have been performed and their results diagnosed. These simulations use the HadSM3 global climate model, which is then dynamically downscaled to approximately 50 km using a consistent regional climate model (HadRM3). Changes in the model’s seasonal-mean surface air temperatures and precipitation are discussed at both global and regional scales, along with the physical mechanisms underlying the changes. It is shown that the global model reproduces many of the large-scale features of the mid-Holocene climate (consistent with previous studies) and that the results suggest that many areas within the Mediterranean region were wetter during winter with a stronger seasonal cycle of surface air temperatures during the early Holocene. This precipitation signal in the regional model is strongest in the in the northeast Mediterranean (near Turkey), consistent with low-level wind patterns and earlier palaeosyntheses. It is, however, suggested that further work is required to fully understand the changes in the winter circulation patterns over the Mediterranean region.
Resumo:
Harvesting the Sea provides the first systematic treatment of the exploitation of various marine resources, such as large-scale fishing, fish salting, salt and purple-dye production, and oyster and fish-farming, in the Roman world and its role within the ancient economy. Bringing together literary, epigraphic, and legal sources, with a wealth of archaeological data collected in recent years, the book shows that these marine resources were an important feature of the Roman economy and, in scope and market-oriented production, paralleled phenomena taking place in the Roman agricultural economy on land. The book also examines the importance of technological innovations, the organization of labour, and the use of the existing legal framework in defence of economic interests against competitors for the same natural resource.
Resumo:
Classical Greek and Roman influence on the material culture of Central Asia and northwestern India is often considered in the abstract. This article attempts to examine the mechanisms of craft production and movement of artisans and objects which made such influence possible, through four case studies: (1) Mould-made ceramics in Hellenistic eastern Bactria; (2) Plaster casts used in the production of metalware from Begram; (3) Terracotta figurines and the moulds used to produce them, from various archaeological sites; and (4) Mass production of identical gold adornments in the nomadic tombs from Tillya Tepe. The implications of such techniques for our understanding of the development of Gandhāran art are also discussed.
Resumo:
BACKGROUND: Several studies have shown that adherence to the Mediterranean Diet measured by using the Mediterranean diet score (MDS) is associated with lower obesity risk. The newly proposed Nordic Diet could hold similar beneficial effects. Because of the increasing focus on the interaction between diet and genetic predisposition to adiposity, studies should consider both diet and genetics. OBJECTIVE: We investigated whether FTO rs9939609 and TCF7L2 rs7903146 modified the association between the MDS and Nordic diet score (NDS) and changes in weight (Δweight), waist circumference (ΔWC), and waist circumference adjusted for body mass index (BMI) (ΔWCBMI). DESIGN: We conducted a case-cohort study with a median follow-up of 6.8 y that included 11,048 participants from 5 European countries; 5552 of these subjects were cases defined as individuals with the greatest degree of unexplained weight gain during follow-up. A randomly selected subcohort included 6548 participants, including 5496 noncases. Cases and noncases were compared in analyses by using logistic regression. Continuous traits (ie, Δweight, ΔWC, and ΔWCBMI) were analyzed by using linear regression models in the random subcohort. Interactions were tested by including interaction terms in models. RESULTS: A higher MDS was significantly inversely associated with case status (OR: 0.98; 95% CI: 0.96, 1.00), ΔWC (β = -0.010 cm/y; 95% CI: -0.020, -0.001 cm/y), and ΔWCBMI (β = -0.008; 95% CI:-0.015, -0.001) per 1-point increment but not Δweight (P = 0.53). The NDS was not significantly associated with any outcome. There was a borderline significant interaction between the MDS and TCF7L2 rs7903146 on weight gain (P = 0.05), which suggested a beneficial effect of the MDS only in subjects who carried 1 or 2 risk alleles. FTO did not modify observed associations. CONCLUSIONS: A high MDS is associated with a lower ΔWC and ΔWCBMI, regardless of FTO and TCF7L2 risk alleles. For Δweight, findings were less clear, but the effect may depend on the TCF7L2 rs7903146 variant. The NDS was not associated with anthropometric changes during follow-up.