929 resultados para MULTISCALE FRACTAL DIMENSION
Resumo:
Background: Prostate cancer is a serious public health problem that affects quality of life and has a significant mortality rate. The aim of the present study was to quantify the fractal dimension and Shannon’s entropy in the histological diagnosis of prostate cancer. Methods: Thirty-four patients with prostate cancer aged 50 to 75 years having been submitted to radical prostatectomy participated in the study. Histological slides of normal (N), hyperplastic (H) and tumor (T) areas of the prostate were digitally photographed with three different magnifications (40x, 100x and 400x) and analyzed. The fractal dimension (FD), Shannon’s entropy (SE) and number of cell nuclei (NCN) in these areas were compared. Results: FD analysis demonstrated the following significant differences between groups: T vs. N and H vs. N groups (p < 0.05) at a magnification of 40x; T vs. N (p < 0.01) at 100x and H vs. N (p < 0.01) at 400x. SE analysis revealed the following significant differences groups: T vs. H and T vs. N (p < 0.05) at 100x; and T vs. H and T vs. N (p < 0.001) at 400x. NCN analysis demonstrated the following significant differences between groups: T vs. H and T vs. N (p < 0.05) at 40x; T vs. H and T vs. N (p < 0.0001) at 100x; and T vs. H and T vs. N (p < 0.01) at 400x. Conclusions: The quantification of the FD and SE, together with the number of cell nuclei, has potential clinical applications in the histological diagnosis of prostate cancer.
Resumo:
Turbulent mixing is a very important issue in the study of geophysical phenomena because most fluxes arising in geophysics fluids are turbulent. We study turbulent mixing due to convection using a laboratory experimental model with two miscible fluids of different density with an initial top heavy density distribution. The fluids that form the initial unstable stratification are miscible and the turbulence will produce molecular mixing. The denser fluid comes into the lighter fluid layer and it generates several forced plumes which are gravitationally unstable. As the turbulent plumes develop, the denser fluid comes into contact with the lighter fluid layer and the mixing process grows. Their development is caused by the lateral interaction between these plumes at the complex fractal surface between the dense and light fluids
Resumo:
International audience
Resumo:
Texture is one of the most important visual attributes used in image analysis. It is used in many content-based image retrieval systems, where it allows the identification of a larger number of images from distinct origins. This paper presents a novel approach for image analysis and retrieval based on complexity analysis. The approach consists of a texture segmentation step, performed by complexity analysis through BoxCounting fractal dimension, followed by the estimation of complexity of each computed region by multiscale fractal dimension. Experiments have been performed with MRI database in both pattern recognition and image retrieval contexts. Results show the accuracy of the method and also indicate how the performance changes as the texture segmentation process is altered.
Resumo:
This paper introduces a novel methodology to shape boundary characterization, where a shape is modeled into a small-world complex network. It uses degree and joint degree measurements in a dynamic evolution network to compose a set of shape descriptors. The proposed shape characterization method has all efficient power of shape characterization, it is robust, noise tolerant, scale invariant and rotation invariant. A leaf plant classification experiment is presented on three image databases in order to evaluate the method and compare it with other descriptors in the literature (Fourier descriptors, Curvature, Zernike moments and multiscale fractal dimension). (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
This work proposes the development and study of a novel technique lot the generation of fractal descriptors used in texture analysis. The novel descriptors are obtained from a multiscale transform applied to the Fourier technique of fractal dimension calculus. The power spectrum of the Fourier transform of the image is plotted against the frequency in a log-log scale and a multiscale transform is applied to this curve. The obtained values are taken as the fractal descriptors of the image. The validation of the proposal is performed by the use of the descriptors for the classification of a dataset of texture images whose real classes are previously known. The classification precision is compared to other fractal descriptors known in the literature. The results confirm the efficiency of the proposed method. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
During the late 20th century it was proposed that a design aesthetic reflecting current ecological concerns was required within the overall domain of the built environment and specifically within landscape design. To address this, some authors suggested various theoretical frameworks upon which such an aesthetic could be based. Within these frameworks there was an underlying theme that the patterns and processes of Nature may have the potential to form this aesthetic — an aesthetic based on fractal rather than Euclidean geometry. In order to understand how fractal geometry, described as the geometry of Nature, could become the referent for a design aesthetic, this research examines the mathematical concepts of fractal Geometry, and the underlying philosophical concepts behind the terms ‘Nature’ and ‘aesthetics’. The findings of this initial research meant that a new definition of Nature was required in order to overcome the barrier presented by the western philosophical Nature¯culture duality. This new definition of Nature is based on the type and use of energy. Similarly, it became clear that current usage of the term aesthetics has more in common with the term ‘style’ than with its correct philosophical meaning. The aesthetic philosophy of both art and the environment recognises different aesthetic criteria related to either the subject or the object, such as: aesthetic experience; aesthetic attitude; aesthetic value; aesthetic object; and aesthetic properties. Given these criteria, and the fact that the concept of aesthetics is still an active and ongoing philosophical discussion, this work focuses on the criteria of aesthetic properties and the aesthetic experience or response they engender. The examination of fractal geometry revealed that it is a geometry based on scale rather than on the location of a point within a three-dimensional space. This enables fractal geometry to describe the complex forms and patterns created through the processes of Wild Nature. Although fractal geometry has been used to analyse the patterns of built environments from a plan perspective, it became clear from the initial review of the literature that there was a total knowledge vacuum about the fractal properties of environments experienced every day by people as they move through them. To overcome this, 21 different landscapes that ranged from highly developed city centres to relatively untouched landscapes of Wild Nature have been analysed. Although this work shows that the fractal dimension can be used to differentiate between overall landscape forms, it also shows that by itself it cannot differentiate between all images analysed. To overcome this two further parameters based on the underlying structural geometry embedded within the landscape are discussed. These parameters are the Power Spectrum Median Amplitude and the Level of Isotropy within the Fourier Power Spectrum. Based on the detailed analysis of these parameters a greater understanding of the structural properties of landscapes has been gained. With this understanding, this research has moved the field of landscape design a step close to being able to articulate a new aesthetic for ecological design.
Resumo:
In this work, we study the fractal and multifractal properties of a family of fractal networks introduced by Gallos et al (2007 Proc. Nat. Acad. Sci. USA 104 7746). In this fractal network model, there is a parameter e which is between 0 and 1, and allows for tuning the level of fractality in the network. Here we examine the multifractal behavior of these networks, the dependence relationship of the fractal dimension and the multifractal parameters on parameter e. First, we find that the empirical fractal dimensions of these networks obtained by our program coincide with the theoretical formula given by Song et al (2006 Nature Phys. 2 275). Then from the shape of the τ(q) and D(q) curves, we find the existence of multifractality in these networks. Last, we find that there exists a linear relationship between the average information dimension 〈D(1)〉 and the parameter e.
Resumo:
Based on protein molecular dynamics, we investigate the fractal properties of energy, pressure and volume time series using the multifractal detrended fluctuation analysis (MF-DFA) and the topological and fractal properties of their converted horizontal visibility graphs (HVGs). The energy parameters of protein dynamics we considered are bonded potential, angle potential, dihedral potential, improper potential, kinetic energy, Van der Waals potential, electrostatic potential, total energy and potential energy. The shape of the h(q)h(q) curves from MF-DFA indicates that these time series are multifractal. The numerical values of the exponent h(2)h(2) of MF-DFA show that the series of total energy and potential energy are non-stationary and anti-persistent; the other time series are stationary and persistent apart from series of pressure (with H≈0.5H≈0.5 indicating the absence of long-range correlation). The degree distributions of their converted HVGs show that these networks are exponential. The results of fractal analysis show that fractality exists in these converted HVGs. For each energy, pressure or volume parameter, it is found that the values of h(2)h(2) of MF-DFA on the time series, exponent λλ of the exponential degree distribution and fractal dimension dBdB of their converted HVGs do not change much for different proteins (indicating some universality). We also found that after taking average over all proteins, there is a linear relationship between 〈h(2)〉〈h(2)〉 (from MF-DFA on time series) and 〈dB〉〈dB〉 of the converted HVGs for different energy, pressure and volume.
Resumo:
Many studies have shown that we can gain additional information on time series by investigating their accompanying complex networks. In this work, we investigate the fundamental topological and fractal properties of recurrence networks constructed from fractional Brownian motions (FBMs). First, our results indicate that the constructed recurrence networks have exponential degree distributions; the average degree exponent 〈λ〉 increases first and then decreases with the increase of Hurst index H of the associated FBMs; the relationship between H and 〈λ〉 can be represented by a cubic polynomial function. We next focus on the motif rank distribution of recurrence networks, so that we can better understand networks at the local structure level. We find the interesting superfamily phenomenon, i.e., the recurrence networks with the same motif rank pattern being grouped into two superfamilies. Last, we numerically analyze the fractal and multifractal properties of recurrence networks. We find that the average fractal dimension 〈dB〉 of recurrence networks decreases with the Hurst index H of the associated FBMs, and their dependence approximately satisfies the linear formula 〈dB〉≈2-H, which means that the fractal dimension of the associated recurrence network is close to that of the graph of the FBM. Moreover, our numerical results of multifractal analysis show that the multifractality exists in these recurrence networks, and the multifractality of these networks becomes stronger at first and then weaker when the Hurst index of the associated time series becomes larger from 0.4 to 0.95. In particular, the recurrence network with the Hurst index H=0.5 possesses the strongest multifractality. In addition, the dependence relationships of the average information dimension 〈D(1)〉 and the average correlation dimension 〈D(2)〉 on the Hurst index H can also be fitted well with linear functions. Our results strongly suggest that the recurrence network inherits the basic characteristic and the fractal nature of the associated FBM series.
Resumo:
In this paper, we study performance of Katz method of computing fractal dimension of waveforms, and its estimation accuracy is compared with Higuchi's method. The study is performed on four synthetic parametric fractal waveforms for which true fractal dimensions can be calculated, and real sleep electroencephalogram. The dependence of Katz's fractal dimension on amplitude, frequency and sampling frequency of waveforms is noted. Even though the Higuchi's method has given more accurate estimation of fractal dimensions, the study suggests that the results of Katz's based fractal dimension analysis of biomedical waveforms have to be carefully interpreted.