976 resultados para MOVIMIENTO OCULAR
Resumo:
Purpose: Over 40% of the permanent population of Norfolk Island possesses a unique genetic admixture dating to Pitcairn Island in the late 18 th century, with descendents having varying degrees of combined Polynesian and European ancestry. We conducted a population-based study to determine the prevalence and causes of blindness and low vision on Norfolk Island. Methods: All permanent residents of Norfolk Island aged ≥ 15 years were invited to participate. Participants completed a structured questionnaire/interview and underwent a comprehensive ophthalmic examination including slit-lamp biomicroscopy. Results: We recruited 781 people aged ≥ 15, equal to 62% of the permanent population, 44% of whom could trace their ancestry to Pitcairn Island. No one was bilaterally blind. Prevalence of unilateral blindness (visual acuity [VA] < 6/60) in those aged ≥ 40 was 1.5%. Blindness was more common in females (P=0.049) and less common in people with Pitcairn Island ancestry (P<0.001). The most common causes of unilateral blindness were age-related macular degeneration (AMD), amblyopia, and glaucoma. Five people had low vision (Best-Corrected VA < 6/18 in better eye), with 4 (80%) due to AMD. People with Pitcairn Island ancestry had a lower prevalence of AMD (P<0.001) but a similar prevalence of glaucoma to those without Pitcairn Island ancestry. Conclusions: The prevalence of blindness and visual impairment in this isolated Australian territory is low, especially amongst those with Pitcairn Island ancestry. AMD was the most common cause of unilateral blindness and low vision. The distribution of chronic ocular diseases on Norfolk Island is similar to mainland Australian estimates.
Resumo:
Purpose To determine the rate of recurrence and associated risk factors following the use of mitomycin C (MMC) and/or interferon alpha-2b (IFN) for management of non-invasive ocular surface squamous neoplasia (OSSN). Design Retrospective non-comparative interventional case series. Methods Clinical practice setting of 135 patients treated consecutively with topical MMC (0.4 mg/mL) and/or IFN (1 million units/mL) for OSSN observed for clinical recurrence. Results Clinical recurrences were diagnosed in 19 of 135 (14.1%) eyes following topical treatment. The mean time to recurrence was 17.2 months (range 4 - 61) with 14 (73.7%) recurring within a two year period. There was no greater risk of recurrence identified for variables including lesion size, lesion location, gender, age, treatment type or duration. Post-hoc log-Rank pairwise comparisons revealed that lesions initially treated using surgery alone had significantly reduced time to recurrence (21.1 ± 5.6 months) compared to previous topical treatment with MMC (with or without surgery) (29.6 ± 4.7 months) (p = 0.04) and primary OSSN (23.2 ± 1.8 months) (p = 0.09). Conclusions Topical MMC and IFN are an effective treatment modality for a wide range of non-invasive OSSN. Topical therapy avoids the morbidity of excisional surgery with equivalent or reduced recurrence rates and should be considered as primary therapy.
Resumo:
Purpose to evaluate the effects of the wearer’s pupil size and spherical aberration on visual performance with centre-near, aspheric multifocal contact lenses (MFCLs). The advantage of binocular over monocular vision was also investigated. Methods Twelve young volunteers, with an average age of 27±5 years, participated in the study. LogMAR Visual Acuity (VA) was measured under cycloplegia for a range of defocus levels (from +3.0 to -3.0D, in 0.5D steps) with no correction and with three aspheric MFCLs (Air Optix Aqua Multifocal, Ciba Vision, Duluth, GA, US) with a centre-near design, providing correction for “Low”, “Med” and “High” near demands. Measurements were performed for all combinations of the following conditions: i) artificial pupils of 6mm and 3mm diameter, ii) binocular and monocular (dominant eye) vision. Depth-of-focus (DOF) was calculated from the VA vs. defocus curves. Ocular aberrations under cycloplegia were measured using iTrace. Results VA at -3.0D defocus (simulating near performance) was statistically higher for the 3mm than for the 6mm pupil (p=0.006), and for binocular rather than for monocular vision (p<0.001). Similarly, DOF was better for the 3mm pupil (p=0.002) and for binocular viewing conditions (p<0.001, ANOVA). Both VA at –3.0D defocus and DOF increased as the “addition” of the MFCL correction increased. Finally, with the centre-near MFCLs a linear correlation was found between VA at –3.0D defocus and the wearer’s ocular spherical aberration (R2=0.20 p<0.001 for 6mm data), with the eyes exhibiting the higher positive spherical aberration experiencing lower VAs. By contrast, no correlation was found between VA and spherical aberration at 0.00D defocus (distance vision). Conclusions Both near VA and depth-of-focus improve with these MFCLs, with the effects being more pronounced for small pupils and binocular than for monocular vision. Coupling of the wearer’s ocular spherical aberration with the aberration profiles provided by MFCLs affects their functionality.
Resumo:
Moderator Opening The early focus of contact lens wear and ocular health was on oxygen delivery. However, as we learn more about how the eye works, and investigate how the contact lens interacts with the cornea, the role of the tear film has risen in prominence. A healthy tear film is critical for normal ocular homeostasis, and abnormalities of the tear film are the primary cause of dry eye. In order to improve patient eye health and comfort during lens wear, we need to further elucidate the relationship among contact lenses, contact lens solutions, the tear film, and the corneal epithelium, and find ways to maintain homeostasis of the ocular surface. In this section, we review the latest data and opinions on this complex relationship between contact lenses and lens care solutions
Resumo:
Eye care practitioners (ECPs) would tend to agree that wearing contact lenses increases the risk for infection, but millions of patients are still fitted with lenses every year because ECPs feel that the risk is manageable and that their patients' eye health can be protected. The Fusarium and Acanthamoeba keratitis outbreaks of years past were a wake-up call to manufacturers, ECPs, and regulatory agencies that risk cannot be managed without diligence, and that the complex relationship between contact lens materials, contact lens solutions, and compliance needs to be better understood in order to optimize the efficacy of contact lens care and improve care guidelines.
Resumo:
The report of this subcommittee concerns the impact of contact lenses (CLs) on the ocular surface, with a particular emphasis on CL discomfort (CLD). We define the ocular surface, its regional anatomy, and the physiological responses of each region to CL wear.
Resumo:
In vivo confocal microscopy (IVCM) is an emerging technology that provides minimally invasive, high resolution, steady-state assessment of the ocular surface at the cellular level. Several challenges still remain but, at present, IVCM may be considered a promising technique for clinical diagnosis and management. This mini-review summarizes some key findings in IVCM of the ocular surface, focusing on recent and promising attempts to move “from bench to bedside”. IVCM allows prompt diagnosis, disease course follow-up, and management of potentially blinding atypical forms of infectious processes, such as acanthamoeba and fungal keratitis. This technology has improved our knowledge of corneal alterations and some of the processes that affect the visual outcome after lamellar keratoplasty and excimer keratorefractive surgery. In dry eye disease, IVCM has provided new information on the whole-ocular surface morphofunctional unit. It has also improved understanding of pathophysiologic mechanisms and helped in the assessment of prognosis and treatment. IVCM is particularly useful in the study of corneal nerves, enabling description of the morphology, density, and disease- or surgically induced alterations of nerves, particularly the subbasal nerve plexus. In glaucoma, IVCM constitutes an important aid to evaluate filtering blebs, to better understand the conjunctival wound healing process, and to assess corneal changes induced by topical antiglaucoma medications and their preservatives. IVCM has significantly enhanced our understanding of the ocular response to contact lens wear. It has provided new perspectives at a cellular level on a wide range of contact lens complications, revealing findings that were not previously possible to image in the living human eye. The final section of this mini-review provides a focus on advances in confocal microscopy imaging. These include 2D wide-field mapping, 3D reconstruction of the cornea and automated image analysis.
Resumo:
Purpose: To investigate the diurnal variations in ocular wavefront aberrations over two consecutive days in young adult subjects. Materials and methods: Measurements of both lower-order (sphero-cylindrical refractive powers) and higher-order (3rd and 4th order aberration terms) ocular aberrations were collected for 30 young adult subjects at ten different times over two consecutive days using a Hartmann-Shack aberrometer. Fifteen subjects were myopic and 15 were emmetropic. Five sets of measurements were collected each day at approximately 3 hourly intervals, with the first measurement taken at ~9 am and the final measurement at ~9 pm. Results: Spherical equivalent refraction (p = 0.029) and spherical aberration (p = 0.043) were both found to undergo significant diurnal variation over the two measurement days. The spherical equivalent was typically found to be at a maximum (i.e. most hyperopic) at the morning measurement, with a small myopic shift of 0.37 ± 0.15 D observed over the course of the day. The mean spherical aberration of all subjects (0.038 ± 0.048 μm) was found to be positive during the day and gradually became more negative into the evening, with a mean amplitude of change of 0.036 ± 0.02 μm. None of the other considered sphero-cylindrical refractive power components or higher-order aberrations exhibited significant diurnal variation over the two days of the experiment (p>0.05). Except for the lower-order astigmatism at 90/180 deg (p = 0.040), there were no significant differences between myopes and emmetropes in the magnitude and timing of the observed diurnal variations (p>0.05). Conclusions: Significant diurnal variations in spherical equivalent and spherical aberration were consistently observed over two consecutive days of measurement. Research and clinical applications requiring precise refractive error and wavefront measurements should take these diurnal changes into account when interpreting wavefront data.
Resumo:
PURPOSE To investigate changes in the characteristics of the corneal optics, total optics, anterior biometrics and axial length of the eye during a near task, in downward gaze, over 10 min. METHODS Ten emmetropes (mean - 0.14 ± 0.24 DS) and 10 myopes (mean - 2.26 ± 1.42 DS) aged from 18 to 30 years were recruited. To measure ocular biometrics and corneal topography in downward gaze, an optical biometer (Lenstar LS900) and a rotating Scheimpflug camera (Pentacam HR) were inclined on a custom built, height and tilt adjustable table. The total optics of the eye were measured in downward gaze with binocular fixation using a modified Shack-Hartmann wavefront sensor. Initially, subjects performed a distance viewing task at primary gaze for 10 min to provide a "wash-out" period for prior visual tasks. A distance task (watching video at 6 m) in downward gaze (25°) and a near task (watching video on a portable LCD screen with 2.5 D accommodation demand) in primary gaze and 25°downward gaze were then carried out, each for 10 min in a randomized order. During measurements, in dichoptic view, a Maltese cross was fixated with the right (untested) eye and the instrument’s fixation target was fixated with the subject’s tested left eye. Immediately after (0 min), 5 and 10 min from the commencement of each trial, measurements of ocular parameters were acquired in downward gaze. RESULTS Axial length exhibited a significant increase with downward gaze and accommodation over time (p<0.05). The greatest axial elongation was observed in downward gaze with 2.5 D accommodation after 10 min (mean change from baseline 23±3 µm). Downward gaze also caused greater changes in anterior chamber depth (ACD) and lens thickness (LT) with accommodation (ACD mean change -163±12µm at 10 min; LT mean change 173±17 µm at 10 min) compared to primary gaze with accommodation (ACD mean change -138±12µm at 10 min; LT mean change 131±15 µm at 10 min). Both corneal power and total ocular power changed by a small but significant amount with downward gaze (p<0.05), resulting in a myopic shift (~0.10 D) in the spherical power of the eye compared with primary gaze. CONCLUSION The axial length, anterior biometrics and ocular refraction change significantly with accommodation in downward gaze as a function of time. These findings provide new insights into the optical and bio-mechanical changes of the eye during typical near tasks.
Resumo:
Anisometropia represents a unique example of ocular development, where the two eyes of an individual, with an identical genetic background and seemingly subject to identical environmental influences, can grow asymmetrically to produce significantly different refractive errors. This review provides an overview of the research examining myopic anisometropia, the ocular characteristics underlying the condition and the potential aetiological factors involved. Various mechanical factors are discussed, including corneal structure, intraocular pressure and forces generated during near work that may contribute to development of anisomyopia. Potential visually guided mechanisms of unequal ocular growth are also explored, including the influence of astigmatism, accommodation, higher-order aberrations and the choroidal response to altered visual experience. The association between binocular vision, ocular dominance and asymmetric refraction is also considered, along with a review of the genetic contribution to the aetiology of myopic anisometropia. Despite a significant amount of research into the biomechanical, structural and optical characteristics of anisometropic eyes, there is still no unifying theory, which adequately explains how two eyes within the same visual system grow to different endpoints.
Resumo:
Purpose: To investigate effects of pupil shifts, occurring with changes in luminance and accommodation stimuli, on refraction components and higher-order aberrations. Method: Participants were young and older groups (n=20, 22±2 years, age range 18–25 years; n=19, 49±4 years, 45–58 years). Aberrations/refractions at 4 mm and 3 mm diameters were compared between centered and decentered pupils for low (background 0.01cd/m², 0D), and high (6100cd/m², 4D or 6D) stimuli. Decentration was the difference between pupil centers for low and high stimuli. Clinical important changes with decentration were: M ±0.50D or ±0.25D, J180 and J45 ±0.25D or ±0.125D, HORMS ±0.05m, C(3, 1) ±0.05m, C(4, 0) ±0.05m. Results: Because of small pupil shifts in most participants (mean 0.26mm), there were few important changes in most refraction components and higher-order aberration terms. However, M changed by >0.25 D for a third of participants with 4mm pupils. When determining refractions from 2nd-6th order aberration coefficients, the more stringent criteria gave 76/ 534 (14%) possible important changes. Some participants had large pupil shifts with considerable aberration changes. Comparisons at the high stimulus were possible for only 11 participants because of small pupils. When refractions were determined from 2nd order aberration coefficients only, there were only 35 (7%) important changes for the more stringent criteria. Conclusion: Usually pupil shifts with changes in stimulus conditions have little influence on aberrations, but they can with high shifts. The number of aberrations orders that are considered as contributing to refraction influences the proportion of cases that might be considered clinically important.
Resumo:
BACKGROUND: The evaluation of retinal image quality in cataract eyes has gained importance and the clinical modulation transfer functions (MTF) can obtained by aberrometer and double pass (DP) system. This study aimed to compare MTF derived from a ray tracing aberrometer and a DP system in early cataractous and normal eyes. METHODS: There were 128 subjects with 61 control eyes and 67 eyes with early cataract defined according to the Lens Opacities Classification System III. A laser ray-tracing wavefront aberrometer (iTrace) and a double pass (DP) system (OQAS) assessed ocular MTF for 6.0 mm pupil diameters following dilation. Areas under the MTF (AUMTF) and their correlations were analyzed. Stepwise multiple regression analysis assessed factors affecting the differences between iTrace- and OQAS-derived AUMTF for the early cataract group. RESULTS: For both early cataract and control groups, iTrace-derived MTFs were higher than OQAS-derived MTFs across a range of spatial frequencies (P < 0.01). No significant difference between the two groups occurred for iTrace-derived AUMTF, but the early cataract group had significantly smaller OQAS-derived AUMTF than did the control group (P < 0.01). AUMTF determined from both the techniques demonstrated significant correlations with nuclear opacities, higher-order aberrations (HOAs), visual acuity, and contrast sensitivity functions, while the OQAS-derived AUMTF also demonstrated significant correlations with age and cortical opacity grade. The factors significantly affecting the difference between iTrace and OQAS AUMTF were root-mean-squared HOAs (standardized beta coefficient = -0.63, P < 0.01) and age (standardized beta coefficient = 0.26, P < 0.01). CONCLUSIONS: MTFs determined from a iTrace and a DP system (OQAS) differ significantly in early cataractous and normal subjects. Correlations with visual performance were higher for the DP system. OQAS-derived MTF may be useful as an indicator of visual performance in early cataract eyes.
Resumo:
AIM To assess the effects of eye rubbing on corneal thickness (CT) and intraocular pressure (IOP) measurements obtained 0-30min after habitual eye rubbing in symptomatic patients. METHODS Measurements of IOP and CT were obtained at five locations (central, temporal, superior, nasal and inferior) before, and every 5min for 30min interval after 30s of eye rubbing, for 25 randomly selected eyes of 14 subjects with ocular allergy and 11 age-matched normals. Differences in measurements were calculated in each group [Baseline measurements minus measurements recorded at each time interval after eye rubbing (for IOP), and for each corneal location (for CT)] and comparison were then made between groups (allergic versus control) for differences in any observed effects. RESULTS Within groups, baseline mean IOPs in the allergic patient-group (14.2±3.0 mm Hg) and in the control group (13.1±1.9 mm Hg) were similar at all times, after eye rubbing (P >0.05, for all). The maximum reduction in IOP was 0.8 mm Hg in the control subjects and the maximum increase was also 0.8 mm Hg in the allergic subjects. Between groups (allergic versus control), the changes in IOP remained under 1 mm Hg at all times (P=0.2) after 30min of eye rubbing. Between 0 and 30min of CT measurements after eye rubbing, the mean central CT (CCT), inferior CT (ICT), superior CT (SCT), temporal CT (TCT) and nasal CT (NCT) did not vary significantly from baseline values in the control and allergic-subject groups (P>0.05, for both). Between both groups, changes in CT were similar at all locations (P>0.05) except for the TC which was minimally thinner by about 4.4 µm (P=0.001) in the allergic subjects than in the control subjects, 30min following 30s of eye rubbing. CONCLUSION IOP measured in allergic subjects after 30s of habitual eye rubbing was comparable with that obtained in normal subjects at all times between 0 and 30min. Although, CT in the allergic subjects were similar to those of the control subjects at all times, it varied between +10 and -7.5 µm following eye rubbing, with the temporal cornea showing consistent reductions in thickness in the subjects with allergy. However, this reduction was minimal and was considered to not be clinically relevant.
Resumo:
This thesis examines the short-term changes occurring in a number of the eye's structures during reading tasks, and explores how these changes differ between normal eyes, and those with short-sightedness (myopia). This research revealed changes in the shape and thickness of a number of the eye's structures during near work, and aspects of these changes showed differences associated with myopia. These findings have potentially important implications for our understanding of the role of near work in the development and progression of myopia.