990 resultados para MOLECULAR FILMS


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concept of constitutional dynamic chemistry (CDC) based on the control of non-covalent interactions in supramolecular structures is promising for having a large impact on nanoscience and nanotechnology if adequate nanoscale manipulation methods are used. In this study, we demonstrate that the layer-by-layer (LbL) technique may be used to produce electroactive electrodes with ITO coated by tetrasulfonated nickel phthalocyanine (NiTsPc) alternated with poly(allylamine hydrochloride) (PAH) incorporating gold nanoparticles (AuNP), in which synergy has been achieved in the interaction between the nanoparticles and NiTsPc. The catalytic activity toward hydrogen peroxide (H(2)O(2)) in multilayer films was investigated using cyclic voltammetry, where oxidation of H(2)O(2) led to increased currents in the PAH-AuNP/NiTsPc films for the electrochemical processes associated with the phthalocyanine ring and nickel at 0.52 and 0.81 V vs. SCE, respectively, while for PAH/NiTsPc films (without AuNP) only the first redox process was affected. In control experiments we found out that the catalytic activity was not solely due to the presence of AuNP, but rather to the nanoparticles inducing NiTsPc supramolecular structures that favored access to their redox sites, thus yielding strong charge transfer. The combined effects of NiTsPc and AuNP, which could only be observed in nanostructured LbL films, point to another avenue to pursue within the CDC paradigm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Ethanol/water organosolv pulping was used to obtain sugarcane bagasse pulp that was bleached with sodium chlorite. This bleached pulp was used to obtain cellulosic films that were further evaluated by Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), and scanning electron microscopy (SEM). A good film formation was observed when temperature of 74 degrees C and baths of distilled water were used, which after FTIR, TGA, and SEM analysis indicated no significant difference between the reaction times. The results showed this to be an interesting and promising process, combining the prerequisites for a more efficient utilization of agro-industrial residues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Properties of hybrid films can be enhanced if their molecular architecture is controlled. In this paper, poly (p-phenylene vinylene) was mixed with stearic acid in order to form stable hybrid Langmuir monolayers. Surface properties of these films were investigated with measurements of surface pressure, and also with polarization modulation infrared reflection-absorption spectroscopy (PM-IRRAS). The films were transferred from the air-water interface to solid supports through the Langmuir-Blodgett technique, and the viability of the film as optical device was investigated with fluorescence spectroscopy. Comparing the fluorescent spectra for the polymer in solution, as a casting film, and as an LB film, the emission bands for LB films were narrower and appeared at lower wavelengths. The interactions between the film components and the design for the LB film may take advantage of the method to immobilize luminescent polymers in mixed ultrathin films adsorbed in solid matrices. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The use of biodegradable natural polymers has increased due to the over-solid packaging waste. In this study, a chemical modification of the casein molecule was performed by Maillard reaction, and the modified polymer was evaluated by polyacrylamide gel electrophoresis (PAGE), thermogravimetry/derivative thermogravimetry (TG/DTG), FT-IR, and (1)H-NMR spectroscopy. Subsequently, films based on the modified casein were obtained and characterized by mechanical analysis, water vapor transmission, and erosion behavior. The PAGE results suggested an increase of molecular mass of the modified polymer, and FT-IR spectroscopy data indicated inclusion of C-OH groups into this molecule. The TG/DTG curves of modified casein presented a different thermal decomposition profile compared to the individual compounds. Mechanical tests showed that the chemical modification of the casein molecules provided higher elongation rates (45.5%) to the films, suggesting higher plasticity, than the original molecules (13.4%). The modified casein films presented higher permeability (0.505 +/- A 0.006 mu g/h mm(3)) than the original polymer (0.387 +/- A 0.006 mu g/h mm(3)) films at 90% relative humidity (RH). In pH 1.2, modified casein films presented higher erosion rates (32.690 +/- A 0.692%) than casein films (19.910 +/- A 2.083%) after 8 h, suggesting an increased sensibility for erosion of the modified casein films in acid environment. In water (pH 7.0), the films erosion profiles were similar. Those findings indicate that the modification of molecule by Maillard reaction provided films more plastic, hydrophilic, and sensitive to erosion in acid environment, suggesting that a new polymer with changed properties was founded.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Weakly branched silica films formed by the two-step sol-gel process allow for the formation of high selectivity membranes for gas separation. 29Si NMR and gas permeation showed that reduced crosslinking leads to He/CH4 selectivity improvement from 300 to 1000. Applied in membrane reactor for cyclohexane conversion to benzene, conversions were achieved at 14 fold higher than a conventional reactor at 250°C. Hydrothermal stability studies showed that carbon templating of silica is required for hydrothermally stable membranes. From our work it was shown that with correct application of chemistry, practical membrane systems can be built to suit gas separation (e. g. hydrogen fuel) and reactor systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Molecular dynamics simulations of carbon atom depositions are used to investigate energy diffusion from the impact zone. A modified Stillinger-Weber potential models the carbon interactions for both sp2 and sp3 bonding. Simulations were performed on 50 eV carbon atom depositions onto the (111) surface of a 3.8 x 3.4 x 1.0 nm diamond slab containing 2816 atoms in 11 layers of 256 atoms each. The bottom layer was thermostated to 300 K. At every 100th simulation time step (27 fs), the average local kinetic energy, and hence local temperature, is calculated. To do this the substrate is divided into a set of 15 concentric hemispherical zones, each of thickness one atomic diameter (0.14 nm) and centered on the impact point. A 50-eV incident atom heats the local impact zone above 10 000 K. After the initial large transient (200 fs) the impact zone has cooled below 3000 K, then near 1000 K by 1 ps. Thereafter the temperature profile decays approximately as described by diffusion theory, perturbed by atomic scale fluctuations. A continuum model of classical energy transfer is provided by the traditional thermal diffusion equation. The results show that continuum diffusion theory describes well energy diffusion in low energy atomic deposition processes, at distance and time scales larger than 1.5 nm and 1-2 ps, beyond which the energy decays essentially exponentially. (C) 1998 Published by Elsevier Science S.A. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

X-Ray diffraction is reported from mesoporous silicate films grown at the air/water interface. The films were studied both as powdered films, and oriented on silicon or mica sheets. At early stages of growth we observe Bragg diffraction from a highly ordered cubic phase, with both long and short d-spacing peaks. We have assigned this as a discontinuous micellar Pm3n phase in which the silica is partly ordered. Later films retain only the known hexagonal p6m peaks and have lost any order both at short d-spacings and the longer d-spacing Bragg peaks characteristic of the cubic structure. The silica framework is considerably expanded from that in bulk amorphous silica, average Si Si distances are some 30% greater. Incorporation of glycerol or polyethylene glycol preserves the earlier cubic structure. To be consistent with earlier, in situ, X-ray and neutron reflectivity data we infer that both structures are produced after a phase transition from a less-ordered him structure late in the induction phase. The structural relations between the film Pm3n and p6m phase(s) and the known bulk SBA-1 and MCM-41 phases are briefly discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of structure perpendicular to and in the plane of the interface has been studied for mesoporous silicate films self-assembled at the air/water interface. The use of constrained X-ray and neutron specular reflectometry has enabled a detailed study of the structural development perpendicular to the interface during the pre-growth phase. Off-specular neutron reflectometry and grazing incidence X-ray diffraction has enabled the in-plane structure to be probed with excellent time resolution. The growth mechanism under the surfactant to silicate source ratios used in this work is clearly due to the self-assembly of micellar and molecular species at the air/liquid interface, resulting in the formation of a planar mesoporous film that is tens of microns thick. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Langmuir and Langmuir-Blodgett (LB) films of a cationic amphiphilic porphyrin mixed with n-alkanes octadecane and hexatriacontane were prepared and characterized, to examine the influence of the alkanes on film structure and stability. While the structure present in these films was controlled primarily by the porphyrin, the addition of the alkanes resulted in significant changes to both the phase behavior of the Langmuir films and the molecular arrangement of the LB films. These changes, as well as the observed chain length effects, are explained in terms of the intermolecular interactions present in the films.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This naphthalene diimide derivative, DC18, forms highly conjugated semiconducting stacked assemblies over electrodes after electrochemical conditioning. These molecular materials are very efficient towards electrochemical photoreduction of oxygen under visible light.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Proteins incorporated into phospholipid Langmuir-Blodgett (LB) films are a good model system for biomembranes and enzyme immobilization studies. The specific fluidity of biomembranes, an important requisite for enzymatic activity, is naturally controlled by varying phospholipid compositions. In a model system, instead, LB film fluidity may be varied by covering the top layer with different substances able to interact simultaneously with the phospholipid and the protein to be immobilized. In this study, we immobilized a carbohydrate rich Neurospora crassa alkaline phosphatase (NCAP) in monolayers of the sodium salt of dihexadecylphosphoric acid (DHP), a synthetic phospholipid that provides very condensed Langmuir films. The binding of NCAP to DHP Langmuir-Blodgett (LB) films was mediated by the anionic polysaccharide iota-carrageenan (iota-car). Combining results from surface isotherms and the quartz crystal microbalance technique, we concluded that the polysaccharide was essential to promote the interaction between DHP and NCAP and also to increase the fluidity of the film. An estimate of DHP:iota-car ratio within the film also revealed that the polysaccharide binds to DHP LB film in an extended conformation. Furthermore, the investigation of the polysaccharide conformation at molecular level, using sum-frequency vibrational spectroscopy (SFG), indicated a preferential conformation of the carrageenan molecules with the sulfate groups oriented toward the phospholipid monolayer, and both the hydroxyl and ether groups interacting preferentially with the protein. These results demonstrate how interfacial electric fields can reorient and induce conformational changes in macromolecules, which may significantly affect intermolecular interactions at interfaces. This detailed knowledge of the interaction mechanism between the enzyme and the LB film is relevant to design strategies for enzyme immobilization when orientation and fluidity properties of the film provided by the matrix are important to improve enzymatic activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent advances in several experimental techniques have enabled detailed structural information to be obtained for floating (Langmuir) monolayers and Langmuir-Blodgett films. These techniques are described briefly and their application to the study of films of fatty acids and their salts is discussed. Floating monolayers on aqueous subphases have been shown to possess a complex polymorphism with phases whose structures may be compared to those of smectic mesophases. However, only those phases that exist at high surface pressures are normally used in Langmuir-Blodgett (LB) deposition. In single LB monolayers of fatty acids and fatty acid salts the acyl chains are in the all-cans conformation with their long axes normal to the substrate. The in-plane molecular packing is hexagonal with long-range bond orientational order and short-range positional order: known as the hexatic-B structure. This structure is found irrespective of the phase of the parent floating monolayer. The structures of multilayer LB films are similar to the structures of their bulk crystals, consisting of stacked bilayer lamellae. Each lamella is formed from two monolayers of fatty acid molecules or ions arranged head to head and held together by hydrogen bonding between pairs of acids or ionic bonding through the divalent cations. With acids the acyl chains are tilted with respect to the substrate normal and have a monoclinic structure, whereas the salts with divalent cations may have the chains normal to the substrate or tilted. The in-plane structures are usually centred rectangular with the chains in the trans conformation and packed in a herringbone pattern, Multilayer films of the acids show only a single-step order-disorder transition at the malting point, This temperature tends to rise as the number of layers increases. Complex changes occur when multilayer films of the salts are heated. Disorder of the chains begins at low temperatures but the arrangement of the head groups does not alter until the melting temperature is reached, Slow heating to a temperature just below the melting temperature gives, with some salts, a radical change in phase. The lamellar structure disappears and a new phase consisting of cylindrical rods lying parallel to the substrate surface and stacked in a hexagonal pattern is formed, In each rod the cations are aligned along the central axis surrounded by the disordered acyl chains. (C) 2001 Elsevier Science B,V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

(E)-N-Hexadecyl-4-[2-(4-octadecyloxynaphthyl) ethenyl] quinolinium bromide, which has a wide-bodied chromophore and terminal n-alkyl groups, adopts a U-shape when spread at the air-water interface but a stretched conformation when compressed to ca. 35 mN m(-1). The high-pressure phase has a narrow stability range prior to collapse but may be extended from 40 to 60 mN m(-1) by co-spreading the dye in a 1 : 1 ratio with docosanoic acid. The mixed Langmuir-Blodgett (LB) film has a monolayer thickness of 4.6 +/- 0.2 nm which decreases to 2.5 +/- 0.1 nm layer(-1) in the bulk, the reduction arising from an interdigitating layer arrangement, both top and bottom. It is the first example of LB-Lego(R) and, in addition, represents the only fully interdigitating structure with non-centrosymmetrically aligned chromophores. They are tilted 38 degrees from the substrate normal. The second-harmonic intensity increases quadratically with the number of layers, i.e. as I-(N)(2 omega) = (I(1)N2)-N-2 omega, with a second-order susceptibility of chi ((2))(zzz) = 30 pm V-1 at 1064 nm for refractive indices of n(omega) = 1.55 and n(2 omega) = 1.73, d = 2.5 nm layer(-1) and phi = 38 degrees. Angle resolved X-ray photoelectron spectra (XPS) of these films provide no evidence of the bromide counterion, which suggests that it is replaced by OH 2 or HCO3-, which occur naturally in the aqueous subphase, or C21H43COO- from the co-deposited fatty acid. This probably applies to all cationic dyes deposited by the LB technique.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a study of the effects of nanoconfinement on a system of hard Gaussian overlap particles interacting with planar substrates through the hard-needle-wall potential, extending earlier work by two of us [D. J. Cleaver and P. I. C. Teixeira, Chem. Phys. Lett. 338, 1 (2001)]. Here, we consider the case of hybrid films, where one of the substrates induces strongly homeotropic anchoring, while the other favors either weakly homeotropic or planar anchoring. These systems are investigated using both Monte Carlo simulation and density-functional theory, the latter implemented at the level of Onsager's second-virial approximation with Parsons-Lee rescaling. The orientational structure is found to change either continuously or discontinuously depending on substrate separation, in agreement with earlier predictions by others. The theory is seen to perform well in spite of its simplicity, predicting the positional and orientational structure seen in simulations even for small particle elongations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cellulose and its derivatives, such as hydroxypropylcellulose (HPC) have been studied for a long time but they are still not well understood particularly in liquid crystalline solutions. These systems can be at the origin of networks with properties similar to liquid crystalline (LC) elastomers. The films produced from LC solutions can be manipulated by the action of moisture allowing for instance the development of a soft motor (Geng et al., 2013) driven by humidity. Cellulose nanocrystals (CNC), which combine cellulose properties with the specific characteristics of nanoscale materials, have been mainly studied for their potential as a reinforcing agent. Suspensions of CNC can also self-order originating a liquid-crystalline chiral nematic phases. Considering the liquid crystalline features that both LC-HPC and CNC can acquire, we prepared LC-HPC/CNC solutions with different CNC contents (1,2 and 5 wt.%). The effect of the CNC into the LC-HPC matrix was determined by coupling rheology and NMR spectroscopy - Rheo-NMR a technique tailored to analyse orientational order in sheared systems. (C) 2015 Elsevier Ltd. All rights reserved.