982 resultados para METHYLENETETRAHYDROFOLATE REDUCTASE GENE
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
With the identification of common single locus point mutations as risk factors for thrombophilia, many DNA testing methodologies have been described for detecting these variations. Traditionally, functional or immunological testing methods have been used to investigate quantitative anticoagulant deficiencies. However, with the emergence of the genetic variations, factor V Leiden, prothrombin 20210 and, to a lesser extent, the methylene tetrahydrofolate reductase (MTHFR677) and factor V HR2 haplotype, traditional testing methodologies have proved to be less useful and instead DNA technology is more commonly employed in diagnostics. This review considers many of the DNA techniques that have proved to be useful in the detection of common genetic variants that predispose to thrombophilia. Techniques involving gel analysis are used to detect the presence or absence of restriction sites, electrophoretic mobility shifts, as in single strand conformation polymorphism or denaturing gradient gel electrophoresis, and product formation in allele-specific amplification. Such techniques may be sensitive, but are unwielding and often need to be validated objectively. In order to overcome some of the limitations of gel analysis, especially when dealing with larger sample numbers, many alternative detection formats, such as closed tube systems, microplates and microarrays (minisequencing, real-time polymerase chain reaction, and oligonucleotide ligation assays) have been developed. In addition, many of the emerging technologies take advantage of colourimetric or fluorescence detection (including energy transfer) that allows qualitative and quantitative interpretation of results. With the large variety of DNA technologies available, the choice of methodology will depend on several factors including cost and the need for speed, simplicity and robustness. © 2000 Lippincott Williams & Wilkins.
Resumo:
BACKGROUND: Migraine is a chronic disabling neurovascular condition that may in part be caused by endothelial and cerebrovascular disruption induced by hyperhomocysteinaemia. We have previously provided evidence indicating that reduction of homocysteine by vitamin supplementation can reduce the occurrence of migraine in women. The current study examined the genotypic effects of methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR) gene variants on the occurrence of migraine in response to vitamin supplementation. METHODS: This was a 6-month randomized, double-blinded placebo-controlled trial of daily vitamin B supplementation (B(6), B(9) and B(12)) on reduction of homocysteine and of the occurrence of migraine in 206 female patients diagnosed with migraine with aura. RESULTS: Vitamin supplementation significantly reduced homocysteine levels (P<0.001), severity of headache in migraine (P=0.017) and high migraine disability (P=0.022) in migraineurs compared with the placebo effect (P>0.1). When the vitamin-treated group was stratified by genotype, the C allele carriers of the MTHFR C677T variant showed a higher reduction in homocysteine levels (P<0.001), severity of pain in migraine (P=0.01) and percentage of high migraine disability (P=0.009) compared with those with the TT genotypes. Similarly, the A allele carriers of the MTRR A66G variants showed a higher level of reduction in homocysteine levels (P<0.001), severity of pain in migraine (P=0.002) and percentage of high migraine disability (P=0.006) compared with those with the GG genotypes. Genotypic analysis for both genes combined indicated that the treatment effect modification of the MTRR variant was independent of the MTHFR variant. CONCLUSION: This provided further evidence that vitamin supplementation is effective in reducing migraine and also that both MTHFR and MTRR gene variants are acting independently to influence treatment response in female migraineurs.
Resumo:
Background The methylenetetrahydrofolate reductase (MTHFR) gene variant C677T has been implicated as a genetic risk factor in migraine susceptibility, particularly in Migraine with Aura. Migraine, with and without aura (MA and MO) have many diagnostic characteristics in common. It is postulated that migraine symptomatic characteristics might themselves be influenced by MTHFR. Here we analysed the clinical profile, migraine symptoms, triggers and treatments of 267 migraineurs previously genotyped for the MTHFR C677T variant. The chi-square test was used to analyse all potential relationships between genotype and migraine clinical variables. Regression analyses were performed to assess the association of C677T with all migraine clinical variables after adjusting for gender. Findings The homozygous TT genotype was significantly associated with MA (P < 0.0001) and unilateral head pain (P = 0.002). While the CT genotype was significantly associated with physical activity discomfort (P < 0.001) and stress as a migraine trigger (P = 0.002). Females with the TT genotype were significantly associated with unilateral head pain (P < 0.001) and females with the CT genotype were significantly associated with nausea (P < 0.001), osmophobia (P = 0.002), and the use of natural remedy for migraine treatment (P = 0.003). Conversely, male migraineurs with the TT genotype experienced higher incidences of bilateral head pain (63% vs 34%) and were less likely to use a natural remedy as a migraine treatment compared to female migraineurs (5% vs 20%). Conclusions MTHFR genotype is associated with specific clinical variables of migraine including unilateral head pain, physical activity discomfort and stress.
Resumo:
Elevated blood pressure is a common, heritable cause of cardiovascular disease worldwide. To date, identification of common genetic variants influencing blood pressure has proven challenging. We tested 2.5 million genotyped and imputed SNPs for association with systolic and diastolic blood pressure in 34,433 subjects of European ancestry from the Global BPgen consortium and followed up findings with direct genotyping (N 71,225 European ancestry, N 12,889 Indian Asian ancestry) and in silico comparison (CHARGE consortium, N = 29,136). We identified association between systolic or diastolic blood pressure and common variants in eight regions near the CYP17A1 (P = 7 × 10 24), CYP1A2 (P = 1 × 10 23), FGF5 (P = 1 × 10 21), SH2B3 (P = 3 × 10 18), MTHFR (P = 2 × 10 13), c10orf107 (P = 1 × 10 9), ZNF652 (P = 5 × 10 9) and PLCD3 (P = 1 × 10 8) genes. All variants associated with continuous blood pressure were associated with dichotomous hypertension. These associations between common variants and blood pressure and hypertension offer mechanistic insights into the regulation of blood pressure and may point to novel targets for interventions to prevent cardiovascular disease.
Resumo:
5,10-Methylenetetrahydrofolate reductase (EC 1.1.1.68) was purified from the cytosolic fraction of sheep liver by (NH4)2 SO4 fractionation, acid precipitation, DEAE-Sephacel chromatography and Blue Sepharose affinity chromatography. The homogeneity of the enzyme was established by sodium dodecyl sulphate-polyacrylamide gel electrophoresis, ultracentrifugation and Ouchterlony immunodiffusion test. The enzyme was a dimer of molecular weight 1,66,000 ± 5,000 with a subunit molecular weight of 87,000 ±5,000. The enzyme showed hyperbolic saturation pattern with 5-methyltetrahydrofolate.K 0.5 values for 5-methyltetrahydrofolate menadione and NADPH were determined to be 132 ΜM, 2.45 ΜM and 16 ΜM. The parallel set of lines in the Lineweaver-Burk plot, when either NADPH or menadione was varied at different fixed concentrations of the other substrate; non-competitive inhibition, when NADPH was varied at different fixed concentrations of NADP; competitive inhibition, when menadione was varied at different fixed concentrations of NADP and the absence of inhibition by NADP at saturating concentration of menadione, clearly established that the kinetic mechanism of the reaction catalyzed by this enzyme was ping-pong.
Resumo:
Elevation in plasma homocysteine concentration has been associated with vascular disease and neural tube defects. Methionine synthase is a vitamin B(12)-dependent enzyme that catalyses the remethylation of homocysteine to methionine. Therefore, defects in this enzyme may result in elevated homocysteine levels. One relatively common polymorphism in the methionine synthase gene (D919G) is an A to G transition at bp 2,756, which converts an aspartic acid residue believed to be part of a helix involved in co-factor binding to a glycine. We have investigated the effect of this polymorphism on plasma homocysteine levels in a working male population (n = 607) in which we previously described the relationship of the C677T "thermolabile" methylenetetrahydrofolate reductase (MTHFR) polymorphism with homocysteine levels. We found that the methionine synthase D919G polymorphism is significantly (P = 0.03) associated with homocysteine concentration, and the DD genotype contributes to a moderate increase in homocysteine levels across the homocysteine distribution (OR = 1.58, DD genotype in the upper half of the homocysteine distribution, P = 0.006). Unlike thermolabile MTHFR, the homocysteine-elevating effects of the methionine synthase polymorphism are independent of folate and B(12) levels; however, the DD genotype has a larger homocysteine-elevating effect in individuals with low B(6) levels. This polymorphism may, therefore, make a moderate, but significant, contribution to clinical conditions that are associated with elevated homocysteine.
Resumo:
Lysine-ketoglutaratc reductase catalyzes the first step of lysine catabolism in maize (Zea mays L.) endosperm. The enzyme condenses L-lysine and α-ketoglutarate into saccharopine using NADPH as cofactor. It is endosperm-specific and has a temporal pattern of activity, increasing with the onset of kernel development, reaching a peak 20 to 25 days after pollination, and thereafter decreasing as the kernel approaches maturity. The enzyme was extracted from the developing maize endosperm and partially purified by ammonium-sulfate precipitation, anion-exchange chromatography on DEAE-cellulose, and affinity chromatography on Blue-Sepharose CL-6B. The preparation obtained from affinity chromatography was enriched 275-fold and had a specific activity of 411 nanomoles per minute per milligram protein. The native and denaturated enzyme is a 140 kilodalton protein as determined by polyacrylamide gel electrophoresis. The enzyme showed specificity for its substrates and was not inhibited by either aminoethyl-cysteine or glutamate. Steady-state product-inhibition studies revealed that saccharopine was a noncompetitive inhibitor with respect to α-ketoglutarate and a competitive inhibitor with respect to lysine. This is suggestive of a rapid equilibriumordered binding mechanism with a binding order of lysine, α-ketoglutarate, NADPH. The enzyme activity was investigated in two maize inbred lines with homozygous normal and opaque-2 endosperms. The pattern of lysine-ketoglutarate reductase activity is coordinated with the rate of zein accumulation during endosperm development. A coordinated regulation of enzyme activity and zein accumulation was observed in the opaque-2 endosperm as the activity and zein levels were two to three times lower than in the normal endosperm. Enzyme extracted from L1038 normal and opaque-2 20 days after pollination was partially purified by DEAE-cellulose chromatography. Both genotypes showed a similar elution pattern with a single activity peak eluted at approximately 0.2 molar KCL. The molecular weight and physical properties of the normal and opaque-2 enzymes were essentially the same. We suggest that the Opaque-2 gene, which is a transactivator of the 22 kilodalton zein genes, may be involved in the regulation of the lysine-ketoglutarate reductase gene in maize endosperm. In addition, the decreased reductase activity caused by the opaque-2 mutation may explain, at least in part, the elevated concentration of lysine found in the opaque-2 endosperm.
Resumo:
Cleft lip and/or palate (CL/P) is a major congenital defect with complex etiology, including multiple genetic and environmental factors. Approximately two thirds of the cases are not accompanied by other anomalies and are called nonsyndromic (NS). In the present study, we performed transmission distortion analysis of the MSX1-CA, TGFB3-CA and MTHFR-C677T polymorphisms in 60 parent-child triads, in which the NS-CL/ P affected child had at least one affected parent. No association with genes MSX1 or TGFB3 was found, but the results were suggestive of an association of the MTHFR-C677T polymorphism with NS-CL/P. © 2006 Sociedade Brasileira de Genética.
Resumo:
Sickle cell disease is an inflammatory condition with a pathophysiology that involves vaso-occlusive episodes. Mutations of the methylenetetrahydrofolate reductase (MTHFR) and cystathionine beta-synthase (CBS) genes are risk factors for vascular disease. Due to the importance of identifying risk factors for vaso-occlusive events in sickle cell patients, we investigated the frequencies of the C677T and 844ins68 mutations of the MTHFR and CBS genes, respectively. Three hundred patients with Hb SS, HB SC and HbS/Beta thalassemia, from Brasília, Goiânia, Rio de Janeiro, São Jose do Rio Preto and São Paulo were evaluated. Samples of 5 mL of venous blood were collected in EDTA after informed consent was received from patients. Classical diagnostic methods were used to confirm the hemoglobin phenotypes. The hemoglobin genotypes and polymorphisms studied were evaluated by Restriction Fragment Length Polymorphism and Allele Specific amplification. The results showed that 93 patients (31.00%) were heterozygous and 13 (4.33%) homozygous for the C677T mutation and 90 were heterozygotes (30.00%) and 8 homozygous (2.66%) for the 844ins68 mutation, both with significant differences for genotype frequency between the localities. The allelic frequencies are in Hardy-Weinberg equilibrium for both polymorphisms. The frequency of mutations was significant and the presence of related vaso-occlusive events was more common in patients with Hb SS (p = 0007). The 844ins68 mutation was approximately three times more frequent in patients with vaso-occlusive complications (p = 0011). The C677T mutation did not prove to be associated with risk of vaso-occlusive events (p = 0.193). A C677T-844ins68 interaction occurred in 12.08% of the patients, doubling the risk of vaso-occlusive manifestations. The frequencies of the polymorphisms are consistent with those expected in the Brazilian population. The presence of the 844ins68 mutation of the CBS gene proved to be a potential risk factor for vaso-occlusive events in sickle cell patients.
Resumo:
Objective: To determine plasma homocysteine levels during fasting and after methionine overload, and to correlate homocysteinemia according to methylenetetrahydrofolate reductase (MTHFR) polymorphism in type 2 diabetic adults. Subjects and methods: The study included 50 type 2 diabetic adults (DM group) and 52 healthy subjects (Control group). Anthropometric data, and information on food intake, serum levels of vitamin B 12, folic acid and plasma homocysteine were obtained. The identification of C677T and A1298C polymorphisms was carried out in the MTHFR gene. Results: There was no significant difference in homocysteinemia between the two groups, and hyperhomocysteinemia during fasting occurred in 40% of the diabetic patients and in 23% of the controls. For the same polymorphism, there was not any significant difference in homocysteine between the groups. In the Control group, homocysteinemia was greater in those subjects with C677T and A1298C polymorphisms. Among diabetic subjects, those with the A1298C polymorphism had lower levels of homocysteine compared with individuals with C677T polymorphism. Conclusion: The MTHFR polymorphism (C677T and A1298C) resulted in different outcomes regarding homocysteinemia among individuals of each group (diabetic and control). These data suggest that metabolic factors inherent to diabetes influence homocysteine metabolism. Arq Bras Endocrinol Metab. 2012;56(7):429-34
Resumo:
Individuals with Down syndrome (DS) carry three copies of the Cystathionine beta-synthase (C beta S) gene. The increase in the dosage of this gene results in an altered profile of metabolites involved in the folate pathway, including reduced homocysteine (Hcy), methionine, S-adenosylhomocysteine (SAH) and S-adenosylmethionine (SAM). Furthermore, previous studies in individuals with DS have shown that genetic variants in genes involved in the folate pathway influence the concentrations of this metabolism's products. The purpose of this study is to investigate whether polymorphisms in genes involved in folate metabolism affect the plasma concentrations of Hcy and methylmalonic acid (MMA) along with the concentration of serum folate in individuals with DS. Twelve genetic polymorphisms were investigated in 90 individuals with DS (median age 1.29 years, range 0.07-30.35 years; 49 male and 41 female). Genotyping for the polymorphisms was performed either by polymerase chain reaction (PCR) based techniques or by direct sequencing. Plasma concentrations of Hcy and MMA were measured by liquid chromatography-tandem mass spectrometry as previously described, and serum folate was quantified using a competitive immunoassay. Our results indicate that the MTHFR C677T, MTR A2756G, TC2 C776G and BHMT G742A polymorphisms along with MMA concentration are predictors of Hcy concentration. They also show that age and Hcy concentration are predictors of MMA concentration. These findings could help to understand how genetic variation impacts folate metabolism and what metabolic consequences these variants have in individuals with trisomy 21.
Resumo:
Die Entstehung der Atherosklerose ist ein komplexer Vorgang, der sich durch Ablagerung von Lipiden an der Gefäßwand sowie durch immunologische und inflammatorische Prozesse auszeichnet. Neben konventionellen Risikofaktoren wie Alter, Geschlecht, Rauchen, HDL-Cholesterin, Diabetes mellitus und einer positiven Familienanamnese werden zur Bestimmung des atherosklerotischen Risikos neue Biomarker der inflammatorischen Reaktion untersucht. Ziel dieser Arbeit war die Entwicklung einer Methode zur Diagnostik des Atheroskleroserisikos. Es wurde eine neuartige Chip-Technologie eingesetzt, um das Risiko für eine potentiell drohende atherosklerotische Erkrankung abzuschätzen. Dabei wurde ausgenutzt, dass molekulare Veränderungen in Genen bestimmte Krankheitsbilder auslösen können. rnEs wurde ein molekularbiologischer Test entwickelt, welcher die Untersuchung von genetischen Variationen aus genomischer DNA ermöglicht. Dafür fand die Entwicklung einer Multiplex-PCR statt, deren Produkt mit der Chip-Technologie untersucht werden kann. Dazu wurden auf einem Mikroarray Sonden immobilisiert, mit deren Hilfe genspezifische Mutationen nachgewiesen werden können. So wurden mehrere Gene mit einem geringen Aufwand gleichzeitig getestet. rnDie Auswahl der entsprechenden Marker erfolgte anhand einer Literaturrecherche von randomisierten und kontrollierten klinischen Studien. Der Mikroarray konnte für zwölf Variationen in den acht Genen Prostaglandinsynthase-1 (PTGS1), Endotheliale NO-Synthase (eNOS), Faktor V (F5), 5,10-Methylentetrahydrofolsäure-Reduktase (MTHFR), Cholesterinester-Transferprotein (CETP), Apolipoprotein E (ApoE), Prothrombin (F2) und Lipoproteinlipase (LPL) erfolgreich etabliert werden. Die Präzision des Biochips wurde anhand der Echtzeit-PCR und der Sequenzierung nachgewiesen. rnDer innovative Mikroarray ermöglicht eine einfache, schnelle und kosteneffektive Genotypisierung von wichtigen Allelen. Viele klinisch relevante Variationen für Atherosklerose können nun in nur einem Test überprüft werden. Zukünftige Studien müssen zeigen, ob die Methode eine Vorhersage über den Ausbruch der Erkrankung und eine gezielte Therapie ermöglicht. Dies wäre ein erster Schritt in Richtung präventive und personalisierter Medizin für Atherosklerose.rn
Resumo:
Neural tube defects (NTDs) are the most common severely disabling birth defects in the United States, with a frequency of approximately 1–2 of every 1,000 births. This text includes the identification and evaluation of candidate susceptibility genes that confer risk for the development of neural tube defects (NTDs). The project focused on isolated meningomyelocele, also termed spina bifida (SB). ^ Spina bifida is a complex disease with multifactorial inheritance, therefore the subject population (consisting of North American Caucasians and Hispanics of Mexicali-American descent) was composed of 459 simplex SB families who were tested for genetic associations utilizing the transmission disequilibrium test (TDT), a nonparametric linkage technique. Three categories of candidate genes were studied, including (1) human equivalents of genes determined in mouse models to cause NTDs, (2) HOX and PAX genes, and (3) the MTHFR gene involved in the metabolic pathway of folate. ^ The C677T variant of the 5,10-methylenetetrahydrofolate reductase (MTHFR) gene was the first mutation in this gene to be implicated as a risk factor for NTDs. Our evaluation of the MTHFR gene provides evidence that maternal C677T homozygosity is a risk factor for upper level spina bifida defects in Hispanics [OR = 2.3, P = 0.02]. This observed risk factor is of great importance due to the high prevalence of this homozygous genotype in the Hispanic population. Additionally, maternal C677T/A1298C compound heterozygosity is a risk factor for upper level spina bifida defects in non-Hispanic whites [OR = 3.6, P = 0.03]. ^ For TDT analysis, our total population of 1128 subjects were genotyped for 54 markers from within and/or flanking the 20 candidate genes/gene regions of interest. Significant TDT findings were obtained for 3 of the 54 analyzed markers: d20s101 flanking the PAX1 gene (P = 0.019), d1s228 within the PAX7 gene (P = 0.011), and d2s110 within the PAX8 gene (P = 0.013). These results were followed-up by testing the genes directly for mutations utilizing single-strand conformational analysis (SSCA) and direct sequencing. Multiple variations were detected in each of these PAX genes; however, these variations were not passed from parent to child in phase with the positively transmitted alleles. Therefore, these variations do not contribute to the susceptibility of spina bifida, but rather are previously unreported single nucleotide polymorphisms. ^