845 resultados para MEDIAL PREFRONTAL CORTEX


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the context of an autologous cell transplantation study, a unilateral biopsy of cortical tissue was surgically performed from the right dorsolateral prefrontal cortex (dlPFC) in two intact adult macaque monkeys (dlPFC lesioned group), together with the implantation of a chronic chamber providing access to the left motor cortex. Three other monkeys were subjected to the same chronic chamber implantation, but without dlPFC biopsy (control group). All monkeys were initially trained to perform sequential manual dexterity tasks, requiring precision grip. The motor performance and the prehension's sequence (temporal order to grasp pellets from different spatial locations) were analysed for each hand. Following the surgery, transient and moderate deficits of manual dexterity per se occurred in both groups, indicating that they were not due to the dlPFC lesion (most likely related to the recording chamber implantation and/or general anaesthesia/medication). In contrast, changes of motor habit were observed for the sequential order of grasping in the two monkeys with dlPFC lesion only. The changes were more prominent in the monkey subjected to the largest lesion, supporting the notion of a specific effect of the dlPFC lesion on the motor habit of the monkeys. These observations are reminiscent of previous studies using conditional tasks with delay that have proposed a specialization of the dlPFC for visuo-spatial working memory, except that this is in a different context of "free-will", non-conditional manual dexterity task, without a component of working memory.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The degree to which perceived controllability alters the way a stressor is experienced varies greatly among individuals. We used functional magnetic resonance imaging to examine the neural activation associated with individual differences in the impact of perceived controllability on self-reported pain perception. Subjects with greater activation in response to uncontrollable (UC) rather than controllable (C) pain in the pregenual anterior cingulate cortex (pACC), periaqueductal gray (PAG), and posterior insula/SII reported higher levels of pain during the UC versus C conditions. Conversely, subjects with greater activation in the ventral lateral prefrontal cortex (VLPFC) in anticipation of pain in the UC versus C conditions reported less pain in response to UC versus C pain. Activation in the VLPFC was significantly correlated with the acceptance and denial subscales of the COPE inventory [Carver, C. S., Scheier, M. F., & Weintraub, J. K. Assessing coping strategies: A theoretically based approach. Journal of Personality and Social Psychology, 56, 267–283, 1989], supporting the interpretation that this anticipatory activation was associated with an attempt to cope with the emotional impact of uncontrollable pain. A regression model containing the two prefrontal clusters (VLPFC and pACC) predicted 64% of the variance in pain rating difference, with activation in the two additional regions (PAG and insula/SII) predicting almost no additional variance. In addition to supporting the conclusion that the impact of perceived controllability on pain perception varies highly between individuals, these findings suggest that these effects are primarily top-down, driven by processes in regions of the prefrontal cortex previously associated with cognitive modulation of pain and emotion regulation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Among younger adults, the ability to willfully regulate negative affect, enabling effective responses to stressful experiences, engages regions of prefrontal cortex (PFC) and the amygdala. Because regions of PFC and the amygdala are known to influence the hypothalamic-pituitary-adrenal axis, here we test whether PFC and amygdala responses during emotion regulation predict the diurnal pattern of salivary cortisol secretion. We also test whether PFC and amygdala regions are engaged during emotion regulation in older (62- to 64-year-old) rather than younger individuals. We measured brain activity using functional magnetic resonance imaging as participants regulated (increased or decreased) their affective responses or attended to negative picture stimuli. We also collected saliva samples for 1 week at home for cortisol assay. Consistent with previous work in younger samples, increasing negative affect resulted in ventral lateral, dorsolateral, and dorsomedial regions of PFC and amygdala activation. In contrast to previous work, decreasing negative affect did not produce the predicted robust pattern of higher PFC and lower amygdala activation. Individuals demonstrating the predicted effect (decrease s attend in the amygdala), however, exhibited higher signal in ventromedial prefrontal cortex (VMPFC) for the same contrast. Furthermore, participants displaying higher VMPFC and lower amygdala signal when decreasing compared with the attention control condition evidenced steeper, more normative declines in cortisol over the course of the day. Individual differences yielded the predicted link between brain function while reducing negative affect in the laboratory and diurnal regulation of endocrine activity in the home environment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the potential function of the system formed by connections between the medial prefrontal cortex and the dorsomedial striatum in aspects of attentional function in the rat. It has been reported previously that disconnection of the same corticostriatal circuit produced marked deficits in performance of a serial, choice reaction-time task while sparing the acquisition of an appetitive Pavlovian approach behaviour in an autoshaping task (Christakou et al., 2001). Here, we hypothesized that unilateral disruption of the same circuit would lead to hemispatial inattention, contrasting with the global attention deficit following complete disconnection of the system. Combined unilateral lesions of the medial prefrontal cortex (mPFC) and the medial caudate-putamen (mCPu) within the same hemisphere produced a severe and long-lasting contralesional neglect syndrome while sparing the acquisition of autoshaping. These results provide further evidence for the involvement of the medial prefrontal-dorsomedial striatal circuit in aspects of attentional function, as well as insight into the nature of neglect deficits following lesions at different levels within corticostriatal circuitry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anatomically segregated systems linking the frontal cortex and the striatum are involved in various aspects of cognitive, affective, and motor processing. In this study, we examined the effects of combined unilateral lesions of the medial prefrontal cortex (mPFC) and the core subregion of the nucleus accumbens (AcbC) in opposite hemispheres (disconnection) on a continuous performance, visual attention test [five-choice serial reaction-time task (5CSRTT)]. The disconnection lesion produced a set of specific changes in performance of the 5CSRTT, resembling changes that followed bilateral AcbC lesions while, in addition, comprising a subset of the behavioral changes after bilateral mPFC lesions previously reported using the same task. Specifically, both mPFC/AcbC disconnection and bilateral AcbC lesions markedly affected aspects of response control related to affective feedback, as indexed by perseverative responding in the 5CSRTT. These effects were comparable, although not identical, to those in animals with either bilateral AcbC or mPFC/AcbC disconnection lesions. The mPFC/AcbC disconnection resulted in a behavioral profile largely distinct from that produced by disconnection of a similar circuit described previously, between the mPFC and the dorsomedial striatum, which were shown to form a functional network underlying aspects of visual attention and attention to action. This distinction provides an insight into the functional specialization of corticostriatal circuits in similar behavioral contexts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This series of experiments investigated the role of a prefrontal cortical-dorsal striatal circuit in attention, using a continuous performance task of sustained and spatially divided visual attention. A unilateral excitotoxic lesion of the medial prefrontal cortex and a contralateral lesion of the medial caudate-putamen were used to "disconnect" the circuit. Control groups of rats with unilateral lesions of either structure were tested in the same task. Behavioral controls included testing the effects of the disconnection lesion on Pavlovian discriminated approach behavior. The disconnection lesion produced a significant reduction in the accuracy of performance in the attentional task but did not impair Pavlovian approach behavior or affect locomotor or motivational variables, providing evidence for the involvement of this medial prefrontal corticostriatal system in aspects of visual attentional function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Context: Emotion regulation is critically disrupted in depression and use of paradigms tapping these processes may uncover essential changes in neurobiology during treatment. In addition, as neuroimaging outcome studies of depression commonly utilize solely baseline and endpoint data – which is more prone to week-to week noise in symptomatology – we sought to use all data points over the course of a six month trial. Objective: To examine changes in neurobiology resulting from successful treatment. Design: Double-blind trial examining changes in the neural circuits involved in emotion regulation resulting from one of two antidepressant treatments over a six month trial. Participants were scanned pretreatment, at 2 months and 6 months posttreatment. Setting: University functional magnetic resonance imaging facility. Participants: 21 patients with Major Depressive Disorder and without other Axis I or Axis II diagnoses and 14 healthy controls. Interventions: Venlafaxine XR (doses up to 300mg) or Fluoxetine (doses up to 80mg). Main Outcome Measure: Neural activity, as measured using functional magnetic resonance imaging during performance of an emotion regulation paradigm as well as regular assessments of symptom severity by the Hamilton Rating Scale for Depression. To utilize all data points, slope trajectories were calculated for rate of change in depression severity as well as rate of change of neural engagement. Results: Those depressed individuals showing the steepest decrease in depression severity over the six months were those individuals showing the most rapid increases in BA10 and right DLPFC activity when regulating negative affect over the same time frame. This relationship was more robust than when using solely the baseline and endpoint data. Conclusions: Changes in PFC engagement when regulating negative affect correlate with changes in depression severity over six months. These results are buttressed by calculating these statistics which are more reliable and robust to week-to-week variation than difference scores.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent studies have documented that self-determined choice does indeed enhance performance. However, the precise neural mechanisms underlying this effect are not well understood. We examined the neural correlates of the facilitative effects of self-determined choice using functional magnetic resonance imaging (fMRI). Participants played a game-like task involving a stopwatch with either a stopwatch they selected (self-determined-choice condition) or one they were assigned without choice (forced-choice condition). Our results showed that self-determined choice enhanced performance on the stopwatch task, despite the fact that the choices were clearly irrelevant to task difficulty. Neuroimaging results showed that failure feedback, compared with success feedback, elicited a drop in the vmPFC activation in the forced-choice condition, but not in the self-determined-choice condition, indicating that negative reward value associated with the failure feedback vanished in the self-determined-choice condition. Moreover, the vmPFC resilience to failure in the self-determined-choice condition was significantly correlated with the increased performance. Striatal responses to failure and success feedback were not modulated by the choice condition, indicating the dissociation between the vmPFC and striatal activation pattern. These findings suggest that the vmPFC plays a unique and critical role in the facilitative effects of self-determined choice on performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A distinct aspect of the sense of fairness in humans is that we care not only about equality in material rewards but also about equality in non-material values. One such value is the opportunity to choose freely among many options, often regarded as a fundamental right to economic freedom. In modern developed societies, equal opportunities in work, living, and lifestyle are enforced by anti-discrimination laws. Despite the widespread endorsement of equal opportunity, no studies have explored how people assign value to it. We used functional magnetic resonance imaging to identify the neural substrates for subjective valuation of equality in choice opportunity. Participants performed a two-person choice task in which the number of choices available was varied across trials independently of choice outcomes. By using this procedure, we manipulated the degree of equality in choice opportunity between players and dissociated it from the value of reward outcomes and their equality. We found that activation in the ventromedial prefrontal cortex tracked the degree to which the number of options between the two players was equal. In contrast, activation in the ventral striatum tracked the number of options available to participants themselves but not the equality between players. Our results demonstrate that the vmPFC, a key brain region previously implicated in the processing of social values, is also involved in valuation of equality in choice opportunity between individuals. These findings may provide valuable insight into the human ability to value equal opportunity, a characteristic long emphasized in politics, economics, and philosophy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Neural responses to rewarding food cues are significantly different in the fed vs. fasted (>8 h food-deprived) state. However, the effect of eating to satiety after a shorter (more natural) intermeal interval on neural responses to both rewarding and aversive cues has not been examined. OBJECTIVE: With the use of a novel functional magnetic resonance imaging (fMRI) task, we investigated the effect of satiation on neural responses to both rewarding and aversive food tastes and pictures. DESIGN: Sixteen healthy participants (8 men, 8 women) were scanned on 2 separate test days, before and after eating a meal to satiation or after not eating for 4 h (satiated vs. premeal). fMRI blood oxygen level-dependent (BOLD) signals to the sight and/or taste of the stimuli were recorded. RESULTS: A whole-brain cluster-corrected analysis (P < 0.05) showed that satiation attenuated the BOLD response to both stimulus types in the ventromedial prefrontal cortex (vmPFC), orbitofrontal cortex, nucleus accumbens, hypothalamus, and insula but increased BOLD activity in the dorsolateral prefrontal cortex (dlPFC; local maxima corrected to P ≤ 0.001). A psychophysiological interaction analysis showed that the vmPFC was more highly connected to the dlPFC when individuals were exposed to food stimuli when satiated than when not satiated. CONCLUSIONS: These results suggest that natural satiation attenuates activity in reward-related brain regions and increases activity in the dlPFC, which may reflect a "top down" cognitive influence on satiation. This trial was registered at clinicaltrials.gov as NCT02298049.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nandrolone is an anabolic-androgenic steroid (AAS) that is highly abused by individuals seeking enhanced physical strength or body appearance. Supraphysiological doses of this synthetic testosterone derivative have been associated with many physical and psychiatric adverse effects, particularly episodes of impulsiveness and overt aggressive behavior. As the neural mechanisms underlying AAS-induced behavioral disinhibition are unknown, we investigated the status of serotonergic system-related transcripts in several brain areas of mice receiving prolonged nandrolone administration. Male C57BL/6J mice received 15 mg/kg of nandrolone decanoate subcutaneously once daily for 28 days, and different sets of animals were used to investigate motor-related and emotion-related behaviors or 5-HT-related messenger RNA (mRNA) levels by real-time quantitative polymerase chain reaction. AAS-injected mice had increased body weight, were more active and displayed anxious-like behaviors in novel environments. They exhibited reduced immobility in the forced swim test, a higher probability of being aggressive and more readily attacked opponents. AAS treatment substantially reduced mRNA levels of most investigated postsynaptic 5-HT receptors in the amygdala and prefrontal cortex. Interestingly, the 5-HT(1B) mRNA level was further reduced in the hippocampus and hypothalamus. There was no alteration of 5-HT system transcript levels in the midbrain. In conclusion, high doses of AAS nandrolone in male mice recapitulate the behavioral disinhibition observed in abusers. Furthermore, these high doses downregulate 5-HT receptor mRNA levels in the amygdala and prefrontal cortex. Our combined findings suggest these areas as critical sites for AAS-induced effects and a possible role for the 5-HT(1B) receptor in the observed behavioral disinhibition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schizophrenia is likely to be a consequence of serial alterations in a number of genes that, together with environmental factors, will lead to the establishment of the illness. The dorsolateral prefrontal cortex (Brodmann`s Area 46) is implicated in schizophrenia and executes high functions such as working memory, differentiation of conflicting thoughts, determination of right and wrong concepts, correct social behavior and personality expression. We performed a comparative proteome analysis using two-dimensional gel electrophoresis of pools from 9 schizophrenia and 7 healthy control patients` dorsolateral prefrontal cortex aiming to identify, by mass spectrometry, alterations in protein expression that could be related to the disease. In schizophrenia-derived samples, our analysis revealed 10 downregulated and 14 upregulated proteins. These included alterations previously implicated in schizophrenia, such as oligodendrocyte-related proteins (myelin basic protein and transferrin), as well as malate dehydrogenase, aconitase, ATP synthase subunits and cytoskeleton-related proteins. Also, six new putative disease markers were identified, including energy metabolism, cytoskeleton and cell signaling proteins. Our data not only reinforces the involvement of proteins previously implicated in schizophrenia, but also suggests new markers, providing further information to foster the comprehension of this important disease. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prefrontal cortex executes important functions such as differentiation of conflicting thoughts, correct social behavior and personality expression, and is directly implicated in different neurodegenerative diseases. We performed a shotgun proteome analysis that included IEF fractionation, RP-LC, and MALDI-TOF/TOF mass spectrometric analysis of tryptic digests from a pool of seven human dorsolateral prefrontal cortex protein extracts. In this report, we present a catalog of 387 proteins expressed in these samples, identified by two or more peptides and high confidence search scores. These proteins are involved in different biological processes such as cell growth and/or maintenance, metabolism/energy pathways, cell communication/signal trarisduction, protein metabolism, transport, regulation of nucleobase, nucleoside, nucleotide and nucleic acid metabolism, and immune response. This analysis contributes to the knowledge of the human brain proteome by adding sample diversity and protein expression data from an alternative technical approach. It will also aid comparative studies of different brain areas and medical conditions, with future applications in basic and clinical research.