158 resultados para Lys49-PLA2


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lys49-phospholipase A(2) (Lys49-PLA(2)) homologues damage membranes by a Ca2+-independent mechanism which does not involve catalytic activity. The myotoxic Lys-49 phospholipase myotoxin II from Cerrophidion (Bothrops) godmani has been crystallized, and X-ray diffraction data were collected to 2.8 Angstrom resolution. Preliminary analysis reveals the presence of one molecule in the asymmetric unit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The complete amino acid sequence of myotoxin II (godMT-II), a myotoxic phospholipase A( 2 )(PLA(2)) homologue from the venom of the Central American crotaline snake Cerrophidion (Bothrops) godmani, was determined by direct protein sequencing methods. GodMT-II is a class II PLA, showing a Lys instead of Asp at position 49. An additional substitution in the calcium binding loop region (Asn instead of Tyr at position 28) suggests the lack of enzymatic activity observed in this toxin is due to loss of its ability to bind the co-factor Ca2+, since the residues involved in forming the catalytic network of PLA(2)s (His-48, Tyr-52 and Asp-99) an conserved in godMT-II. This myotoxin shows highest sequence homology with other Lys-49 PLA(2)s from Bothrops, Agkistrodon and Trimeresurus species, suggesting that they constitute a conserved family of proteins, yet in contrast presents lower homology with Bothrops asper myotoxin III, a catalytically-active PLA(2). The C-terminal region of godMT-II, which is rich in cationic and hydrophobic residues, shares high sequence homology to the corresponding region in the myotoxin II from B. asper, which has been proposed to play an important role in the Ca2+-independent membrane damaging activity. (C) 1998 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lys49-Phospholipase A(2) (Lys49-PLA(2)) homologues damage membranes by a Ca2+-independent mechanism which does not involve catalytic activity, We have solved the structure of myotoxin-I, a Lys49-PLA(2) homologue isolated from the venom of Bothrops nummifer (jumping viper) at 2.4 Angstrom resolution using molecular replacement techniques. The final model has been refined to a final R-factor of 18.4% (R-free = 23.2%), and shows excellent geometry, the myotoxin-I from Bothrops nummifer is dimeric in the crystalline state as has been observed for other Lys49-PLA(2) homologues. In addition, a continuous electron density in the active site and substrate binding channel could be successfully modeled as a fatty-acid molecule. (C) 1999 Elsevier B.V. Ltd, All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Association of class-II phospholipase A(2) (PLA(2)) with aggregated phospholipid substrate results in elevated levels of the Ca2+-dependent hydrolytic activity. The Asp49 residue participates in coordination of the Ca2+ ion cofactor, however, in Lys49-PLA(2) homologues (Lys49-PLA(2)S), substitution of the Asp49 by Lys results in loss of Ca2+ binding and lack of detectable phospholipid hydrolysis. Nevertheless, Lys49-PLA2S cause Ca2+-independent damage of liposome membranes. Bothropstoxin-I is a homodimeric Lys49-PLA(2) from the venom of Bothrops jararacussu, and in fluorescent marker release and dynamic light scattering experiments with DPPC liposomes we demonstrate activation of the Ca2+-independent membrane damaging activity by similar to4 molecules of sodium dodecyl sulphate (SDS) per protein monomer. Activation is accomparlied by significant changes in the intrinsic tryptophan fluorescence emission (ITFE) and near UV circular dichroism (UVCD) spectra of the protein. Subsequent binding of 7-10 SDS molecules results in further alterations in the ITFE and far UVCD spectra. Reduction in the rate of N-bromosuccinimide modification of Trp77 at the dimer interface suggests that initial binding of SDS to this region accompanies the activation of the membrane damaging activity. 1-anilinonaphthalene-8-sulphonic acid binding studies indicate that subsequent SDS binding to the active site is concomitant with the second structural transition. These results provide insights in the structural basis of amphiphile/protein coupling in class-II PLA(2)s. (C) 2004 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myotoxin H, a Lys49 catalytically inactive phospholipase A(2) homologue from Atropoides nummifer venom, was purified, characterized and crystallized. The crystals belongs to the tetragonal system, space group P4(3)2(1)2, with unit cell parameters (a=b=68.66 and c=63.87 Angstrom). Diffraction data were collected to a resolution of 2.32 Angstrom. The crystal structure is currently being determined using molecular replacement techniques. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied at a molecular level the interaction of heparins on bothropstoxin-1 (BthTx-1), a phospholipase A(2) toxin. The protein was monitored using gel filtration chromatography, dynamic light scattering (DLS), circular dichroism (CD), attenuated total reflectance Fourier transform infrared (ATR-FTIR) and intrinsic tryptophan fluorescence emission (ITFE) spectroscopy. The elution profile of the protein presents a displacement of the protein peak to larger complexes when interacting with higher concentration of heparin. The DLS results shows two R-h at a molar ratio of 1, one to the distribution of the protein and the second for the action of heparin on BthTx-I structures, and a large distribution with the increase of protein. The interaction is accompanied by significant changes in the CD spectra, showing two common features: a decrease in signal at 208 nm (3 and 6 kDa heparins) and an isodichroic point near 226 nm (3 kDa heparin). FTIR spectra indicate that only a few amino acid residues are involved in this interaction. Alterations in the ITFE by binding heparins suggest that the initial binding occurs on the ventral face of BthTx-1. Together, these results add an experimental and structural basis on the action mechanism of the heparins over the phospholipases A(2) and provide a molecular model to elucidate the interaction of the enzyme-heparin complex at a molecular level. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bothropstoxin-I (BthTx-I) is a Lys49-PLA(2) from the venom of Bothrops jararacussu that lacks detectable catalytic activity, yet causes rapid Ca2+-independent membrane damage. With the aim of understanding the interaction between BthTx-I and amphiphilic molecules, we have studied the interaction of sodium dodecyl sulphate (SDS) with the protein. Circular dichroism and attenuated total reflection Fourier-transform infrared spectra of BthTx-I reveal changes in the alpha-helical organization of the protein at an SDS/BthTx-I molar ratio of 20-25. At SDS/BthTx-I ratios of 40-45 the alpha-helices return to a native-like conformation, although fluorescence emission anisotropy measurements of 2-amino-N-hexadecyl-benzamide (AHBA) demonstrate that the total SDS is below the critical micelle concentration when this transition occurs. These results may be interpreted as the result of SDS accumulation by the BthTx-I homodimer and the formation of a pre-micelle SDS/BthTx-I complex, which may subsequently be released from the protein surface as a free micelle. Similar changes in the alpha-helical organization of BthTx-I were observed in the presence of dipalmitoylphosphatidylcholine liposomes, suggesting that protein structure transitions coupled to organization changes of bound amphiphiles may play a role in the Ca2+-independent membrane damage by Lys49-PLA(2)s. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have used near ultraviolet photoacoustic spectroscopy (PAS) over the wavelength range 240-320 nm to investigate the complex formed between the homodimeric bothropstoxin-I, a lysine-49-phospholipase A(2) from the venom of Bothrops jararacussu (BthTx-I), with the anionic amphiphile sodium dodecyl sulfate (SDS). At molar ratios > 10, the complex developed a significant light scatter, accompanied by a decrease in the intrinsic tryptophan fluorescence intensity emission (ITFE) of the protein, and an increase in the near UV-PAS signal. Difference PAS spectroscopy at SDS/BthTx-I ratios < 8 were limited to the region 280-290 nm, suggesting initial SDS binding to the tryptophan 77 located at the dimer interface. At SDS/BthTx-I ratios > 10, the intensity between 260 and 320 nm increases demonstrating that the more widespread tyrosine and phenylalanine residues contribute to the SDS/BthTx-I interaction. PAS signal phase changes at wavelengths specific for each aromatic residue suggest that the Trp77 becomes more buried on SDS binding, and that protein structural changes and dehydration may alter the microenvironments of Tyr and Phe residues. These results demonstrate the potential of near UV-PAS for the investigation of membrane proteins/detergent complexes in which light scatter is significant. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fernanda Canduri, Lit C. Mancuso, Andreimar M. Soares, Jose R. Giglio, Richard J. Ward and Raghuvir K. Arni. Crystallization of piratoxin I, a myotoxic Lys49-phospholipase A(2) homologue isolated from the venom of Bothrops pirajai. Toxicon 36, 547-551, 1998.-Large single crystals of piratoxin I, a Lys49-PLA(2) homologue with low enzymatic activity, have been obtained. The crystals belong to the orthorhombic system space group p2(1)2(1)2(1) and diffract X-raps to a resolution of 2.8 Angstrom. Preliminary analysis reveals the presence of two molecules in the crystallographic asymmetric unit. (C) 1998 Elsevier B.V. Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Myotoxin-I (MjTX-I) was purified to homogeneity from the venom of Bothrops moojeni by ion-exchange chromatography on CM-Sepharose. Its molecular weight, estimated by SDS-PAGE, was 13,400 (reduced) or 26,000 (unreduced). The extinction coefficient (E-1.0 cm(1.0 mg/ml)) of MjTX-I was 1.145 at lambda = 278 nm, pH 7.0, and its isoelectric point was 8.2 at ionic strength mu = 0.1. When lyophilized and stored at 4 degrees C, dimeric, trimeric, and pentameric forms of the protein were identified by SDS-PAGE. This heterogeneous sample could be separated into three fractions by gel filtration on Sephadex 6-50. The fractions were analyzed by isoelectric focusing, immunoelectrophoresis, and amino acid composition, which indicated that heterogeneity was the result of different levels of self-association. Protein sequencing indicated that MjTX-I is a Lys49 myotoxin and consists of 121 amino acids (M-r = 13,669), containing a high proportion of basic and hydrophobic residues. It shares a high degree of sequence identity with other Lys49 PLA(2)-like myotoxins, but shows a significantly lower identity with catalytically active Asp49 PLA(2)s. The three-dimensional structure of MjTX-I was modeled based on the crystal structures of three highly homologous Lys49 PLA(2)-like myotoxins. This model showed that the amino acid substitutions are conservative, and mainly the beta-wing region, and the C-terminal extended random coil. MjTX-I displays local myotoxic and edema-inducing activities in mice, and is lethal by intraperitoneal injection, with an LD50 value of 8.5 +/- 0.8 mg/kg, In addition, it is cytotoxic to myoblasts/ myotubes in culture, and disrupts negatively charged liposomes. In comparison with the freshly prepared dimeric sample, the more aggregated forms showed significantly reduced myotoxic activity. However, the edema-inducing activity of MjTX-I was independent of molecular association. Phospholipase A(2) activity on egg yolk, as well as anticoagulant activity, were undetectable both in the native and in the more associated forms. His, Tyr, and Trp residues of the toxin were chemically modified by specific reagents. Although the myotoxic and lethal activities of the modified toxins were reduced by these treatments, neither its edema-inducing or Liposome-disrupting activities were significantly altered. Rabbit antibodies to native MjTX-I cross-reacted with the chemically modified forms, and both the native and modified MjTX-I preparations were recognized by antibodies against the C-terminal region 115-129 of myotoxin II from B. asper, a highly Lys49 PLA(2)-homologue with high sequencial similarity. (C) 2000 Academic Press.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bothropstoxin-I (BthTX-1), a Lys49 phospholipase A(2) homolog with no apparent catalytic activity, was first isolated from Bothrops jararacussu snake venom and completely sequenced in this laboratory. It is a 121-amino-acid single polypeptide chain, highly myonecrotic, despite its inability to catalyze hydrolysis of egg yolk phospholipids, and has 14 half-cystine residues identified at positions 27, 29, 44, 45, 50, 51, 61, 84, 91, 96, 98, 105, 123, and 131 (numbering according to the conventional alignment including gaps, so that the last residue is Cys 131). In order to access its seven disulfide bridges, two strategies were followed: (1) Sequencing of isolated peptides from (tryptic + SV8) and chymotryptic digests by Edman-dansyl degradation; (2) crystallization of the protein and determination of the crystal structure so that at least two additional disulfide bridges could be identified in the final electron density map. Identification of the disulfide-containing peptides from the enzymatic digests was achieved following the disappearance of the original peptides from the HPLC profile after reduction and carboxymethylation of the digest. Following this procedure, four bridges were initially identified from the tryptic and SV8 digests: Cys50-Cys131, Cys51-Cys98, Cys61-Cys91, and Cys84-Cys96. From the chymotryptic digest other peptides were isolated either containing some of the above bridges, therefore confirming the results from the tryptic digest, or presenting a new bond between Cys27 and Cys123. The two remaining bridges were identified as Cys29-Cys45 and Cys44-Cys105 by determination of the crystal structure, showing that BthTX-1 disulfide bonds follow the normal pattern of group II PLA(2)s.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports the purification and biochemical/pharmacological characterization of two myotoxic phospholipases A2 (PLA2s) from Bothrops brazili venom, a native snake from Brazil. Both myotoxins (MTX-I and II) were purified by a single chromatographic step on a CM-Sepharose ion-exchange column up to a high purity level, showing Mr ∼ 14,000 for the monomer and 28,000 Da for the dimer. The N-terminal and internal peptide amino acid sequences showed similarity with other myotoxic PLA2s from snake venoms, MTX-I belonging to Asp49 PLA2 class, enzymatically active, and MTX-II to Lys49 PLA2s, catalytically inactive. Treatment of MTX-I with BPB and EDTA reduced drastically its PLA2 and anticoagulant activities, corroborating the importance of residue His48 and Ca2+ ions for the enzymatic catalysis. Both PLA2s induced myotoxic activity and dose-time dependent edema similar to other isolated snake venom toxins from Bothrops and Crotalus genus. The results also demonstrated that MTXs and cationic synthetic peptides derived from their 115-129 C-terminal region displayed cytotoxic activity on human T-cell leukemia (JURKAT) lines and microbicidal effects against Escherichia coli, Candida albicans and Leishmania sp. Thus, these PLA2 proteins and C-terminal synthetic peptides present multifunctional properties that might be of interest in the development of therapeutic strategies against parasites, bacteria and cancer. © 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)