896 resultados para Lipid autoxidation
Resumo:
Dansylcadaverine, a cationic fluorescent probe binds to bacterial lipopolysaccharide and lipid A, and is displaced competitively by other compounds which possess affinity toward endotoxins. The binding parameters of dansylcadaverine for lipid A were determined by Scatchard analysis to be two apparently equivalent sites with apparent dissociation constants (Kd) ranging between 16 μM to 26 μM, while that obtained for core glycolipid from Salmonella minnesota Re595 yielded a Kd of 22 μM to 28 μM with three binding sites. The Kd of polymyxin B for lipid A was computed from dansylcadaverine displacement by the method of Horovitz and Levitzki (Horovitz, A., and Levitzki, A. (1987) Proc. Natl. Acad. Sci. USA 84, 6654–6658). The applicability of this method for analyzing fluorescence data was validated by comparing the Kds of melittin for lipid A obtained by direct Scatchard analysis, and by the Horovitz-Levitzki method. The displacement of dansylcadaverine from lipid A by polymyxin B was distinctly biphasic with Kds for polymyxin B-lipid A interactions corresponding to 0.4 μM and 1.5 μM, probably resulting as a consequence of lipid A being a mixture of mono- and di-phosphoryl species. This was not observed with core glycolipid, for which the Kd for polymyxin was estimated to range from 1.1 μM to 5.8 μM. The use of dansylcadaverine as a displacement probe offers a novel and convenient method of quantitating the interactions of a wide variety of substances with lipid A.
Resumo:
This report presents evidence for the interactions of several classes of cationic amphiphilic drugs including the phenothiazines, aminoquinolines, biguanides, and aromatic diamidines, with lipid A, the endotoxic principle of lipopolysaccharides. The interactions of the drugs were quantitatively assessed by fluorescence methods. The affinities of the drugs for lipid A parallel their endotoxin-antagonistic effects in the Limulus gelation assay. Dicationic compounds bind lipid A with greater affinity; the affinity of such molecules increases exponentially as a function of the distance between the basic moieties. The bis-amidine drug - pentamidine - examined in greater detail, binds lipid A with high affinity (apparent K-d: 0.12 mu M), and LPS, probably due to simultaneous interactions of the terminal amidine groups with the anionic phosphates on lipid A. The sequestration of endotoxin by pentamidine reduces its propensity to bind to cells, and the complex exhibits attenuated toxicity in biological assays. These results have implications in the development of therapeutic strategies against endotoxin-related disease states.
Resumo:
The structural determinants of the binding affinity of linear dicationic molecules toward lipid A have been examined with respect to the distance between the terminal cationic functions, the basicity, and the type of cationic moieties using a series of spermidine derivatives and pentamidine analogs by fluorescence spectroscopic methods, The presence of two terminal cationic groups corresponds to enhanced affinity, A distinct sigmoidal relationship between the intercationic distance and affinity was observed with a sharp increase at 11 Angstrom, levelling off at about 13 Angstrom. The basicity (pK) and nature of the cationic functions are poor correlates of binding potency, since molecules bearing primary amino, imidazolino, or guanido termini are equipotent, The interaction of pentamidine, a bisamidine drug, with lipid A, characterized in considerable detail employing the putative intermolecular excimerization of the drug, suggests a stoichiometry of 1:1 in the resultant complex, The binding is driven almost exclusively by electrostatic forces, and is dependent on the ionization states of both lipid A and the drug, Under conditions when lipid A is highly disaggregated, pentamidine binds specifically to bis-phosphoryl- but not to monophosphoryl-lipid A indicating that both phosphate groups of lipid A are necessary for electrostatic interactions by the terminal amidininium groups of the drug, Based on these data, a structural model is proposed for the pentamidine-lipid A complex, which may be of value in designing endotoxin antagonists from first principles.
Resumo:
The interactions of lipid A and lipopolysaccharide (LPS) with human serum albumin (HSA) were examined using fluorescence methods. Lipid A binds HSA with a stoichiometry of 2:1 with dissociation constants of 1.0 µM and 6.0 µM for the high- and low-affinity interactions, respectively. Lipid A displaces HSA-bound dansylsarcosine competitively, but not HSA-bound warfarin, suggesting that domain III-A, and not domain 11-A, is a lipid A binding site. Domain I does not contribute a site for lipid A. Based on these data, and the structural similarity between subdomains III-A and III-B, it is proposed that these two regions of HSA represent the high- and low-affinity sites of interaction of lipid A. Whole LPS also binds HSA, displacing dansylsarcosine, and its lipid A moiety appears to be the interaction site. However, there are differences between LPS and free lipid A. Polymyxin B forms ternary complexes with LPS bound to HSA, suggesting that the regions on LPS recognized by HSA and polymyxin B are different. The observed affinity of lipid A for HSA and mass action effects due to its abundance in the circulation would imply a major LPS carrier function for HSA.
Resumo:
The lipid A and lipopolysaccharide (LPS) binding and neutralizing activities of a synthetic, polycationic, amphiphilic peptide were studied. The branched peptide, designed as a functional analog of polymyxin B, has a six residue hydrophobic sequence, bearing at its N-terminus a penultimate lysine residue whose alpha- and epsilon-amino groups are coupled to two terminal lysine residues. In fluorescence spectroscopic studies designed to examine relative affinities of binding to the toxin, neutralization of surface charge and fluidization of the acyl domains, the peptide was active, closely resembling the effects of polymyxin B and its nonapeptide derivative; however, the synthetic peptide does not induce phase transitions in LPS aggregates as do polymyxin B and polymyxin B nonapeptide. The peptide was also comparable with polymyxin B in its ability to inhibit LPS-mediated IL-l and IL-6 release from human peripheral blood mononuclear cells. The synthetic compound is devoid of antibacterial activities and did not induce conductance fluxes in LPS-containing asymmetric planar membranes. These results strengthen the premise that basicity and amphiphilicity are necessary and sufficient physical properties that ascribe endotoxin binding and neutralizing activities, and further suggest that antibacterial/membrane perturbant and LPS neutralizing activities are dissociable, which may be of value in designing LPS-sequestering agents of low toxicity.
Resumo:
The constituents of silkworm fat were studied in detail. An unsaturated fat with a high concentration of phospholipid was generally observed. Its iodine value increased during metamorphosis. The free fatty acid concentration likewise increased from the spinning larvae to the moth stage. Analyses of silkworm organs revealed that the fat body had the most fat and the least free fatty acids, whereas haemolymph contained the least fat. Silk glands contained the maximum phospholipid percentage. Stearic acid predominated in those tissues that had a high percentage of phospholipid. Stearic acid was the predominant saturated fatty acid in both the phospholipids and lecithin, and it accounted for 35–50 per cent of the free fatty acids of all the tissues. Q10 was the ubiquinone present; also found were ubichromenol and tocopherol. Results show that silkworm sterol may be cholesterol. Intestines contained the maximum quantities of sterol, ubiquinone, ubichromenol, and tocopherol. The composition of silkworm phospholipids varies considerably from those of other insects, but lecithin is comparable in its composition with lecithins of other animals. The phospholipids had with them a highly complexed protein along with a polysaccharide. In experiments with snake venoms unsaturated fatty acids were found to be predominantly released from silkworm lecithin.
Resumo:
Despite its bad reputation in the mass media, cholesterol is an indispensable constituent of cellular membranes and vertebrate life. It is, however, also potentially lethal as it may accumulate in the arterial intima causing atherosclerosis or elsewhere in the body due to inherited conditions. Studying cholesterol in cells, and research on how the cell biology of cholesterol affects on system level is essential for a better understanding of the disease states associated with cholesterol and for the development of new therapies for these conditions. On its way to the cell, exogenous cholesterol traverses through endosomes, transport vesicles involved in internalizing material to cells, and needs to be transported out of this compartment. This endosomal pool of cholesterol is important for understanding both the common disorders of metabolism and the more rare hereditary disorders of cholesterol metabolism. The study of cholesterol in cells has been hampered by the lack of bright fluorescent sterol analogs that would resemble cholesterol enough to be used in cellular studies. In the first study of my thesis, we present a new sterol analog, Boron-Dipyrromethene (BODIPY)-cholesterol for visualizing sterols in living cells and organism. This fluorescent cholesterol derivative is shown to behave similarly to cholesterol both by atomic scale computer simulations and biochemical experiments. We characterize its localization inside different types of living cells and show that it can be used to study sterol trafficking in living organisms. Two sterol binding proteins associated with the endosomal membrane; the Niemann-Pick type C disease protein 1 (NPC1) and the Oxysterol Binding Protein Related Protein 1 (ORP1) are the subjects of the rest of this study. Sensing cholesterol on endosomes, transporting lipids away from this compartment and the effects these lipids play on cellular metabolism are considered. In the second study we characterize how the NPC1 protein affects lipid metabolism. We show that this cholesterol binding protein affects synthesis of triglycerides and that genetic polymorphisms or a genetic defect in the NPC1 gene affect triglyceride on the whole body level. These effects take place via regulation of carbon fluxes to different lipid classes in cells. In the third part we characterize the effects of another endosomal sterol binding protein, ORP1L on the function and motility of endosomes. Specifically we elucidate how a mutation in the ability of ORP1L to bind sterols affects its behavior in cells, and how a change in ORP1L levels in cells affects the localization, degradative capacity and motility of endosomes. In addition we show that ORP1L manipulations affect cholesterol balance also in macrophages, a cell type important for the development of atherosclerosis.
Resumo:
The effect of four phenoxy compounds [2,4-dichlorophenoxyacetic acid (2,4-D), 2,4,5-trichlorophenoxyacetic acid, 4-chlorophenoxyacetic acid 2-(dimethylamino)ethyl ester (centrophenoxine), and 4-chlorophenoxy ethyl 2-(dimethylamino) ethyl ether (neophenoxine)] on lipid metabolism in groundnut (Arachis hypogaea) leaves was investigated under nonphotosynthetic conditions. In experiments with leaf disks, the uptake of [1-14C]acetate, [32P]orthophosphate, [35S]sulfate and [methyl-14C]choline was substantially inhibited by all the phenoxy compounds except neophenoxine. When the incorporation of these precursors into lipids was measured and expressed as percentage of total uptake, there was significant inhibition of incorporation of [1-14C]acetate and [32P]orthophosphate into lipids by all the compounds except neophenoxine. The incorporation of [methyl-14C]choline was unaffected by all except centrophenoxine which showed stastically significant stimulation. [35S]Sulfate incorporation into lipids was markedly inhibited only by centrophenoxine. The fatty acid synthetase of isolated chloroplasts assayed in the absence of light was inhibited 20–50% by the phenoxy compounds at 0.5 mM concentration. This inhibition showed a dependence on time of preincubation with the herbicide suggesting an interaction with the enzyme. It was, however, reversible and excess substrate did not prevent the inhibition, suggesting that the herbicide interaction may not be at the active site. sn-Glycerol-3-phosphate acyltransferase in the chloroplast and microsomal fractions was inhibited by 2,4-D while the phosphatidic acid phosphatase was insensitive to all the phenoxy compounds. It is concluded that phenoxy compounds affect precursor uptake, their incorporation into lipids, and the chloroplast fatty acid synthetase. The free acids were the most potent compounds while the ester (centrophenoxine) was less effective and the ether (neophenoxine) was completely ineffective in their influence on lipid metabolism.
Resumo:
The modular formalism of Rangarajan [J. Electroanal. Chem., 55 (1974) 297] has been applied to the admittance of lipid bilayer membranes. The method leads to equations which clearly show the interrelations between the various partial processes involved in ion transport, and which allow examination of model assumptions without the need for a complete rederivation of the membrane admittance. Explicit expressions are given for both the continuum and single jump models. The former includes the ionic displacement component, important mostly at high frequencies.