985 resultados para Linear algebra


Relevância:

60.00% 60.00%

Publicador:

Resumo:

In the world of high performance computing huge efforts have been put to accelerate Numerical Linear Algebra (NLA) kernels like QR Decomposition (QRD) with the added advantage of reconfigurability and scalability. While popular custom hardware solution in form of systolic arrays can deliver high performance, they are not scalable, and hence not commercially viable. In this paper, we show how systolic solutions of QRD can be realized efficiently on REDEFINE, a scalable runtime reconfigurable hardware platform. We propose various enhancements to REDEFINE to meet the custom need of accelerating NLA kernels. We further do the design space exploration of the proposed solution for any arbitrary application of size n × n. We determine the right size of the sub-array in accordance with the optimal pipeline depth of the core execution units and the number of such units to be used per sub-array.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper we approach the problem of computing the characteristic polynomial of a matrix from the combinatorial viewpoint. We present several combinatorial characterizations of the coefficients of the characteristic polynomial, in terms of walks and closed walks of different kinds in the underlying graph. We develop algorithms based on these characterizations, and show that they tally with well-known algorithms arrived at independently from considerations in linear algebra.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We introduce the defect sequence for a contractive tuple of Hilbert space operators and investigate its properties. The defect sequence is a sequence of numbers, called defect dimensions associated with a contractive tuple. We show that there are upper bounds for the defect dimensions. The tuples for which these upper bounds are obtained, are called maximal contractive tuples. The upper bounds are different in the non-commutative and in the commutative case. We show that the creation operators on the full Fock space and the coordinate multipliers on the Drury-Arveson space are maximal. We also study pure tuples and see how the defect dimensions play a role in their irreducibility. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Task-parallel languages are increasingly popular. Many of them provide expressive mechanisms for intertask synchronization. For example, OpenMP 4.0 will integrate data-driven execution semantics derived from the StarSs research language. Compared to the more restrictive data-parallel and fork-join concurrency models, the advanced features being introduced into task-parallelmodels in turn enable improved scalability through load balancing, memory latency hiding, mitigation of the pressure on memory bandwidth, and, as a side effect, reduced power consumption. In this article, we develop a systematic approach to compile loop nests into concurrent, dynamically constructed graphs of dependent tasks. We propose a simple and effective heuristic that selects the most profitable parallelization idiom for every dependence type and communication pattern. This heuristic enables the extraction of interband parallelism (cross-barrier parallelism) in a number of numerical computations that range from linear algebra to structured grids and image processing. The proposed static analysis and code generation alleviates the burden of a full-blown dependence resolver to track the readiness of tasks at runtime. We evaluate our approach and algorithms in the PPCG compiler, targeting OpenStream, a representative dataflow task-parallel language with explicit intertask dependences and a lightweight runtime. Experimental results demonstrate the effectiveness of the approach.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

3-Dimensional Diffuse Optical Tomographic (3-D DOT) image reconstruction algorithm is computationally complex and requires excessive matrix computations and thus hampers reconstruction in real time. In this paper, we present near real time 3D DOT image reconstruction that is based on Broyden approach for updating Jacobian matrix. The Broyden method simplifies the algorithm by avoiding re-computation of the Jacobian matrix in each iteration. We have developed CPU and heterogeneous CPU/GPU code for 3D DOT image reconstruction in C and MatLab programming platform. We have used Compute Unified Device Architecture (CUDA) programming framework and CUDA linear algebra library (CULA) to utilize the massively parallel computational power of GPUs (NVIDIA Tesla K20c). The computation time achieved for C program based implementation for a CPU/GPU system for 3 planes measurement and FEM mesh size of 19172 tetrahedral elements is 806 milliseconds for an iteration.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

QR decomposition (QRD) is a widely used Numerical Linear Algebra (NLA) kernel with applications ranging from SONAR beamforming to wireless MIMO receivers. In this paper, we propose a novel Givens Rotation (GR) based QRD (GR QRD) where we reduce the computational complexity of GR and exploit higher degree of parallelism. This low complexity Column-wise GR (CGR) can annihilate multiple elements of a column of a matrix simultaneously. The algorithm is first realized on a Two-Dimensional (2 D) systolic array and then implemented on REDEFINE which is a Coarse Grained run-time Reconfigurable Architecture (CGRA). We benchmark the proposed implementation against state-of-the-art implementations to report better throughput, convergence and scalability.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coarse Grained Reconfigurable Architectures (CGRA) are emerging as embedded application processing units in computing platforms for Exascale computing. Such CGRAs are distributed memory multi- core compute elements on a chip that communicate over a Network-on-chip (NoC). Numerical Linear Algebra (NLA) kernels are key to several high performance computing applications. In this paper we propose a systematic methodology to obtain the specification of Compute Elements (CE) for such CGRAs. We analyze block Matrix Multiplication and block LU Decomposition algorithms in the context of a CGRA, and obtain theoretical bounds on communication requirements, and memory sizes for a CE. Support for high performance custom computations common to NLA kernels are met through custom function units (CFUs) in the CEs. We present results to justify the merits of such CFUs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Helmke et al. have recently given a formula for the number of reachable pairs of matrices over a finite field. We give a new and elementary proof of the same formula by solving the equivalent problem of determining the number of so called zero kernel pairs over a finite field. We show that the problem is, equivalent to certain other enumeration problems and outline a connection with some recent results of Guo and Yang on the natural density of rectangular unimodular matrices over F-qx]. We also propose a new conjecture on the density of unimodular matrix polynomials. (C) 2016 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, we mainly deal with cigenvalue problems of non-self-adjoint operator. To begin with, the generalized Rayleigh variational principle, the idea of which was due to Morse and Feshbach, is examined in detail and proved more strictly in mathematics. Then, other three equivalent formulations of it are presented. While applying them to approximate calculation we find the condition under which the above variational method can be identified as the same with Galerkin's one. After that we illustrate the generalized variational principle by considering the hydrodynamic stability of plane Poiseuille flow and Bénard convection. Finally, the Rayleigh quotient method is extended to the cases of non-self-adjoint matrix in order to determine its strong eigenvalne in linear algebra.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

AMS Classification: 15A18, 15A21, 15A60.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A noncommutative 2-torus is one of the main toy models of noncommutative geometry, and a noncommutative n-torus is a straightforward generalization of it. In 1980, Pimsner and Voiculescu in [17] described a 6-term exact sequence, which allows for the computation of the K-theory of noncommutative tori. It follows that both even and odd K-groups of n-dimensional noncommutative tori are free abelian groups on 2n-1 generators. In 1981, the Powers-Rieffel projector was described [19], which, together with the class of identity, generates the even K-theory of noncommutative 2-tori. In 1984, Elliott [10] computed trace and Chern character on these K-groups. According to Rieffel [20], the odd K-theory of a noncommutative n-torus coincides with the group of connected components of the elements of the algebra. In particular, generators of K-theory can be chosen to be invertible elements of the algebra. In Chapter 1, we derive an explicit formula for the First nontrivial generator of the odd K-theory of noncommutative tori. This gives the full set of generators for the odd K-theory of noncommutative 3-tori and 4-tori.

In Chapter 2, we apply the graded-commutative framework of differential geometry to the polynomial subalgebra of the noncommutative torus algebra. We use the framework of differential geometry described in [27], [14], [25], [26]. In order to apply this framework to noncommutative torus, the notion of the graded-commutative algebra has to be generalized: the "signs" should be allowed to take values in U(1), rather than just {-1,1}. Such generalization is well-known (see, e.g., [8] in the context of linear algebra). We reformulate relevant results of [27], [14], [25], [26] using this extended notion of sign. We show how this framework can be used to construct differential operators, differential forms, and jet spaces on noncommutative tori. Then, we compare the constructed differential forms to the ones, obtained from the spectral triple of the noncommutative torus. Sections 2.1-2.3 recall the basic notions from [27], [14], [25], [26], with the required change of the notion of "sign". In Section 2.4, we apply these notions to the polynomial subalgebra of the noncommutative torus algebra. This polynomial subalgebra is similar to a free graded-commutative algebra. We show that, when restricted to the polynomial subalgebra, Connes construction of differential forms gives the same answer as the one obtained from the graded-commutative differential geometry. One may try to extend these notions to the smooth noncommutative torus algebra, but this was not done in this work.

A reconstruction of the Beilinson-Bloch regulator (for curves) via Fredholm modules was given by Eugene Ha in [12]. However, the proof in [12] contains a critical gap; in Chapter 3, we close this gap. More specifically, we do this by obtaining some technical results, and by proving Property 4 of Section 3.7 (see Theorem 3.9.4), which implies that such reformulation is, indeed, possible. The main motivation for this reformulation is the longer-term goal of finding possible analogs of the second K-group (in the context of algebraic geometry and K-theory of rings) and of the regulators for noncommutative spaces. This work should be seen as a necessary preliminary step for that purpose.

For the convenience of the reader, we also give a short description of the results from [12], as well as some background material on central extensions and Connes-Karoubi character.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Este libro trata de explicar con claridad y sencillez la forma canónica de Kronecker de haces de matrices para la relación de equivalencia estricta. El tema es importante para los ingenieros, físicos, químicos, economistas y otros científicos que estudian sistemas lineales con control, por lo que una introducción asequible y rigurosa se echa de menos. También esperamos que el libro sea de utilidad para los matemáticos en un segundo curso de álgebra lineal como complemento natural del estudio de la forma canónica de Jordan. La forma canónica de Kronecker es llamada igualmente de Weierstrass-Kronecker, ya que Weierstrass desarrolla la teoría de los divisores elementales y Kronecker la de los índices minimales. Desde un punto de vista epistemológico e histórico deben relacionarse estas teorías con el estudio geométrico de los haces de cónicas y cuádricas para la formación del estudiante de matemáticas. Este libro no intenta establecer estas conexiones. Al lector que desee proseguir en los precedentes históricos le recomendamos el libro sobre historia de las matemáticas de Bourbaki y también artículos de Robert Thompson, Frank Uhlig y otros en la revista Linear Algebra and Its Applications en los años 1980.

Relevância:

60.00% 60.00%

Publicador: