977 resultados para Leite residual
Resumo:
A particularidade da secreção láctea caprina, do tipo apócrina, diferente da secreção merócrina da vaca, leva a erros de interpretação durante a realização de técnicas de avaliação da celularidade do leite de fêmeas desta espécie. Portanto, o presente trabalho teve o objetivo de determinar a contagem de células somáticas pelo método indireto California Mastitis Test (CMT), e por métodos diretos, incluindo a contagem por citometria de fluxo e a contagem microscópica direta, através da coloração de verde de metil e pironina-Y, além de comparar os métodos de contagem celular. Foram analisadas 102 amostras de 51 fêmeas caprinas, das raças Saanen, Parda Alpina e Toggenburg, criadas no Estado de São Paulo. Os animais foram categorizados segundo a fase da lactação, exame físico da glândula mamária e exame do leite. As amostras foram colhidas, após a realização do exame Califórnia Mastitis Test, em duas alíquotas, uma destinada à contagem celular automática e a outra, a contagem microscópica direta, utilizando-se o corante verde de metil e pironina- Y. De acordo com os diferentes escores do CMT, observou- se 74,5% de amostras negativas, 8,8% de amostras com escore traços, 8,8% de amostras ligeiramente positivas (+), 6,8% de amostras fracamente positivas (++) e 0,9% de amostras fortemente positivas (+++). Os valores medianos das contagens de células somáticas presentes no leite de cabras, avaliadas através de contador automático e microscopia direta, e analisadas de acordo com os diferentes escores do CMT, foram, respectivamente, 181.000, 578.000, 628.000, 1.421.500 e 5.542.000 células/mL de leite e 74.991, 271.396, 71.420, 640.995 e 5.049.394 células/ mL de leite, nos escores negativo, traços, +, ++ e +++. Os valores medianos obtidos através da contagem de células somáticas pelo método automático e microscópico direto, de acordo com as fases de lactação foram de 159.500, 508.000 e 277.500 células/mL de leite, e 62.493, 89.275 e 146.411. A correlação obtida entre a contagem celular automática e microscópica direta foi de 88%. A partir dos resultados observados pode-se concluir que existe diferença na contagem celular determinada através do método automático e microscópico sendo este último o mais adequado para a determinação da celularidade no leite de cabras.
Resumo:
A Epistemologia Genética defende que o indivíduo passa por várias etapas de desenvolvimento ao longo da sua vida. O desenvolvimento é observado pela sobreposição do equilíbrio entre a assimilação e a acomodação, resultando em adaptação. Assim, nesta formulação, o ser humano assimila os dados que obtém do exterior, mas uma vez que já tem uma estrutura mental que não está vazia, precisa adaptar esses dados à estrutura mental já existe. O processo de modificação de si próprio é chamado de acomodação. Este esquema revela que nenhum conhecimento chega do exterior sem que sofra alguma alteração pelo indivíduo, sendo que tudo o que se aprende é influenciado por aquilo que já havia sido aprendido. A assimilação ocorre quando a informação é incorporada às estruturas já pré-existentes nessa dinâmica estrutura cognitiva, enquanto que a adaptação ocorre quando o organismo se modifica de alguma maneira de modo a incorporar dinamicamente a nova informação. Por fim, de um pensamento moderno que, buscando a síntese inusitada entre o biológico e o lógico-matemático, parece encontrar seus limites na desconstrução ainda mais inusitada a que tende sistematicamente todo o pensamento na atualidade: a de si mesmo se construindo de modo essencialmente esclarecido
Resumo:
Single-point diamond turning of monocrystalline semiconductors is an important field of research within brittle materials machining. Monocrystalline silicon samples with a (100) orientation have been diamond turned under different cutting conditions (feed rate and depth of cut). Micro-Raman spectroscopy and atomic force microscopy have been used to assess structural alterations and surface finish of the samples diamond turned under ductile and brittle modes. It was found that silicon undergoes a phase transformation when machined in the ductile mode. This phase transformation is evidenced by the creation of an amorphous surface layer after machining which has been probed by Raman scattering. Compressive residual stresses are estimated for the machined surface and it is observed that they decrease with an increase in the feed rate and depth of cut. This behaviour has been attributed to the formation of subsurface cracks when the feed rate is higher than or equal to 2.5 mu m/rev. The surface roughness was observed to vary with the feed rate and the depth of cut. An increase in the surface roughness was influenced by microcrack formation when the feed rate reached 5.0 mu m/rev. Furthermore, a high-pressure phase transformation induced by the tool/material interaction and responsible for the ductile response of this typical brittle material is discussed based upon the presented Raman spectra. The application of this machining technology finds use for a wide range of high quality components, for example the creation of a micrometre-range channel for microfluidic devices as well as microlenses used in the infrared spectrum range.
Resumo:
Background Minimal residual disease is an important independent prognostic factor in childhood acute lymphoblastic leukemia. The classical detection methods such as multiparameter flow cytometry and real-time quantitative polymerase chain reaction analysis are expensive, time-consuming and complex, and require considerable technical expertise. Design and Methods We analyzed 229 consecutive children with acute lymphoblastic leukemia treated according to the GBTLI-99 protocol at three different Brazilian centers. Minimal residual disease was analyzed in bone marrow samples at diagnosis and on days 14 and 28 by conventional homo/heteroduplex polymerase chain reaction using a simplified approach with consensus primers for IG and TCR gene rearrangements. Results At least one marker was detected by polymerase chain reaction in 96.4%, of the patients. By combining the minimal residual disease results obtained on days 14 and 28, three different prognostic groups were identified: minimal residual disease negative on days 14 and 28, positive on day 14/negative on day 28, and positive on both. Five-year event-free survival rates were 85%, 75.6%,, and 27.8%, respectively (p<0.0001). The same pattern of stratification held true for the group of intensively treated children. When analyzed in other subgroups of patients such as those at standard and high risk at diagnosis, those with positive B-derived CD10, patients positive for the TEL/AML1 transcript, and patients in morphological remission on a day 28 marrow, the event-free survival rate was found to be significantly lower in patients with positive minimal residual disease on day 28. Multivariate analysis demonstrated that the detection of minimal residual disease on day 28 is the most significant prognostic factor. Conclusions This simplified strategy for detection of minimal residual disease was feasible, reproducible, cheaper and simpler when compared with other methods, and allowed powerful discrimination between children with acute lymphoblastic leukemia with a good and poor outcome.
Recoleta uterina como estratégia para aumentar a taxa de embriões em fêmeas bovinas de corte e leite
Resumo:
Embryo recovery rate in superovulated cows after uterine flushing is lower than the ovulation rate, which contributes to the relative inefficiency of the conventional cervical recovery procedure. A simple and easy alternative to improve embryo recovery rate is the uterine re-flushing procedure. To evaluate the effect of re-flushing and the influence of breed and operator on bovine embryo recovery rate, 38 Nelore and 19 Jersey females were stimulated using FSH, with embryos being collected by one of two trained operators. At the end of flushing, the catheter was sealed and maintained into the uterine body, filled with flushing medium, while females were released to a paddock for 30 to 50 min, to be submitted to the re-flushing procedure by the same operator. A total of 599 structures were recovered out of 57 procedures, from which 423 (70.6%) were obtained in the first flushing and 176 (29.4%) after re-flushing. Mean recovery rates of 7.4 and 3.1 structures were obtained after the first and second flushing, respectively, for a total of 10.5 structures per cow. Structures were obtained in 73.6% ( 42 out of 57) of the re-flushing procedures. No breed effect was observed on total ova or embryo recovery, with 10.9 total ova collected from Jersey and 10.3 from Nelore females. Likewise, the embryo recovery rate obtained following uterine flushing or re-flushing did not differ either between Jersey (8.1 and 2.7) and Nelore (7.0 and 3.2) animals, or between operators A (7.5 and 3.3) and B (7.3 and 2.9), respectively. In conclusion, the uterine re-flushing procedure significantly increased the rate of embryo recovery in Jersey and Nelore females, with no operator influence being observed.
Resumo:
A typical residual clayey soil originating from basalt in southern Brazil has been analyzed in order to assess the influence of wetting-induced deformation and microstructural features on the collapse behavior. Single and double oedometer tests were undertaken on a soil profile to 9 m depth. The results indicated collapsible behaviour at all profile depths. The influence of pre-consolidation stress and pedogenetic factors in the variability of the physical characteristics of the soil and in the magnitude of the collapse was noted. The collapse coefficient has been shown to be related to the both the microaggregate plasma and the varying nature of the pores and their interconnectivity.
Resumo:
The specific methanogenic activity (SMA) test is an important tool for the monitoring of anaerobic digestion. This paper presents the behavior of the methanogenic archaea of an anaerobic sludge under different conditions of oxygenation in a fixed-bed anaerobic-aerobic reactor treating domestic sewage. The reactor was operated in a continuous manner under different liquid recycle ratios from aerobic to anaerobic zones in order to remove carbon and nitrogen. The application of the SMA test was adapted from several authors and the measurement of the accumulated methane in the reactor was carried out by means of gas chromatography. Methanogenic organisms were not inhibited by the presence of oxygen. In contrast, the values of CH, production rate by sludge exposed to oxygen were greater than those obtained for strictly anaerobic sludge.
Resumo:
We performed Synchrotron X-ray diffraction (XRD) analyses of internal residual stresses in monolithic samples of a newly developed Li(2)O-Al(2)O(3)-SiO(2) (LAS) glass-ceramic produced by sintering and in a commercial LAS glass-ceramic, CERAN (R), produced by the traditional crystal nucleation and growth treatments. The elastic constants were measured by instrumented indentation and a pulse-echo technique. The thermal expansion coefficient of virgilite was determined by high temperature XRD and dilatometry. The c-axis contracts with the increasing temperature whereas the a-axis does not vary significantly. Microcracking of the microstructure affects the thermal expansion coefficients measured by dilatometry and thermal expansion hysteresis is observed for the sintered glass-ceramic as well as for CERAN (R). The measured internal stress is quite low for both glass-ceramics and can be explained by theoretical modeling if the high volume fraction of the crystalline phase (virgilite) is considered. Using a modified Green model, the calculated critical (glass) island diameter for spontaneous cracking agreed with experimental observations. The experimental data collected also allowed the calculation of the critical crystal grain diameters for grain-boundary microcracking due to the anisotropy of thermal expansion of virgilite and for microcracking in the residual glass phase surrounding the virgilite particles. All these parameters are important for the successful microstructural design of sintered glass-ceramics.
Resumo:
In this work, a series of depositions of titanium nitride (TiN) films on M2 and D2 steel substrates were conducted in a Triode Magnetron Sputtering chamber. The temperature; gas flow and pressure were kept constant during each run. The substrate bias was either decreased or increased in a sequence of steps. Residual stress measurements were later conducted through the grazing X-ray diffraction method. Different incident angles were used in order to change the penetration depth and to obtain values of residual stress at different film depths. A model described by Dolle was adapted as an attempt to calculate the values of residual stress at each incident angle as a function of the value from each individual layer. Stress results indicated that the decrease in bias voltage during the deposition has produced compressive residual stress gradients through the film thickness. On the other hand, much less pronounced gradients were found in one of the films deposited with increasing bias voltage. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Thin hard coatings on components and tools are used increasingly due to the rapid development in deposition techniques, tribological performance and application skills. The residual stresses in a coated surface are crucial for its tribological performance. Compressive residual stresses in PVD deposited TiN and DLC coatings were measured to be in the range of 0.03-4 GPa on steel substrate and 0.1-1.3 GPa on silicon. MoS(2) coatings had tensional stresses in the range of 0.8-1.3 on steel and 0.16 GPa compressive stresses on silicon. The fracture pattern of coatings deposited on steel substrate were analysed both in bend testing and scratch testing. A micro-scale finite element method (FEM) modelling and stress simulation of a 2 mu m TiN-coated steel surface was carried out and showed a reduction of the generated tensile buckling stresses in front of the sliding tip when compressive residual stresses of 1 GPa were included in the model. However, this reduction is not similarly observed in the scratch groove behind the tip, possibly due to sliding contact-induced stress relaxation. Scratch and bending tests allowed calculation of the fracture toughness of the three coated surfaces, based on both empirical crack pattern observations and FEM stress calculation, which resulted in highest values for TiN coating followed by MoS(2) and DLC coatings, being K(C) = 4-11, about 2, and 1-2 MPa M(1/2), respectively. Higher compressive residual stresses in the coating and higher elastic modulus of the coating correlated to increased fracture toughness of the coated surface. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Cold-rolled (0-19% of reduction) 0.5% Si electrical steel sheets were studied in detail, including macro and micro residual stress measurements, crystallographic texture, dc-hysteresis curves and iron losses. Even for the smallest deformation, losses increase significantly, with large increase of the hysteresis losses, whereas the anomalous losses reduce slightly. The residual microstresses are similar to 150-350 MPa, whereas residual macrostresses are compressive, similar to 50 MPa. The large increase of the hysteresis losses is attributed to the residual microstresses. The dislocation density estimated by X-ray diffraction is in reasonable agreement with that predicted from the Sablik et al. model for effect of plastic deformation on hysteresis. The intensity of the texture fibers {1 1 1}< u v w > and < 110 >//RD (RD = rolling direction) increases with the reduction. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
In this work, an axisymmetric two-dimensional finite element model was developed to simulate instrumented indentation testing of thin ceramic films deposited onto hard steel substrates. The level of film residual stress (sigma(r)), the film elastic modulus (E) and the film work hardening exponent (n) were varied to analyze their effects on indentation data. These numerical results were used to analyze experimental data that were obtained with titanium nitride coated specimens, in which the substrate bias applied during deposition was modified to obtain films with different levels of sigma(r). Good qualitative correlation was obtained when numerical and experimental results were compared, as long as all film properties are considered in the analyses, and not only sigma(r). The numerical analyses were also used to further understand the effect of sigma(r) on the mechanical properties calculated based on instrumented indentation data. In this case, the hardness values obtained based on real or calculated contact areas are similar only when sink-in occurs, i.e. with high n or high ratio VIE, where Y is the yield strength of the film. In an additional analysis, four ratios (R/h(max)) between indenter tip radius and maximum penetration depth were simulated to analyze the combined effects of R and sigma(r) on the indentation load-displacement curves. In this case, or did not significantly affect the load curve exponent, which was affected only by the indenter tip radius. On the other hand, the proportional curvature coefficient was significantly affected by sigma(r) and n. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The optimization of the treatment process for residual waters from a brewery operating under the modality of an anaerobic reactor and activated sludge combination was studied in two phases. In the first stage, lasting for six months, the characteristics and parameters of the plant operation were analyzed, wherein a diversion rate of more than 50% to aerobic treatment, the use of two aeration tanks and a high sludge production prevailed. The second stage comprised four months during which the system worked under the proposed operational model, with the aim of improving the treatment: reduction of the diversion rate to 30% and use of only one aeration tank At each stage, TSS, VSS and COD were measured at the entrance and exit of the anaerobic reactor mid the aeration tanks. The results were compared with the corresponding design specifications and the needed conditions were applied to reduce the diversion rate towards the aerobic process through monitoring the volume and concentration of the affluent, while applying the strategic changes in reactor parameters needed to increase its efficiency. A diversion reduction from 53 to 34% was achieved, reducing the sludge discharge generated in the aerobic system from 3670mg TSS/l. with two aeration tanks down to 2947mf TSS/l using one tank keeping the same relation VSS:TSS (0.55) and an efficiency of total removal of 98% in terms of COD.