957 resultados para Leishmania (L) chagasi


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growing interest and applications of biotechnology products have increased the development of new processes for recovery and purification of proteins. The expanded bed adsorption (EBA) has emerged as a promising technique for this purpose. It combines into one operation the steps of clarification, concentration and purification of the target molecule. Hence, the method reduces the time and the cost of operation. In this context, this thesis aim was to evaluate the recovery and purification of 503 antigen of Leishmania i. chagasi expressed in E. coli M15 and endotoxin removal by EBA. In the first step of this study, batch experiments were carried out using two experimental designs to define the optimal adsorption and elution conditions of 503 antigen onto Streamline chelating resin. For adsorption assays, using expanded bed, it was used a column of 2.6 cm in diameter by 30.0 cm in height coupled to a peristaltic pump. In the second step of study, the removal of endotoxin during antigen recovery process was evaluated employing the non-ionic surfactant Triton X-114 in the washing step ALE. In the third step, we sought developing a mathematical model able to predict the 503 antigen breakthrough curves in expanded mode. The experimental design results to adsorption showed the pH 8.0 and the NaCl concentration of 2.4 M as the optimum adsorption condition. In the second design, the only significant factor for elution was the concentration of imidazole, which was taken at 600 mM. The adsorption isotherm of the 503 antigen showed a good fit to the Langmuir model (R = 0.98) and values for qmax (maximum adsorption capacity) and Kd (equilibrium constant) estimated were 1.95 mg/g and 0.34 mg/mL, respectively. Purification tests directly from unclarified feedstock showed a recovery of 59.2% of the target protein and a purification factor of 6.0. The addition of the non-ionic surfactant Triton X-114 to the washing step of EBA led to high levels (> 99%) of LPS removal initially present in the samples for all conditions tested. The mathematical model obtained to describe the 503 antigen breakthrough curves in Streamline Chelanting resin in expanded mode showed a good fit for both parameter estimation and validation steps. The validated model was used to optimize the efficiencies, achieving maximum values of the process and of the column efficiencies of 89.2% and 75.9%, respectively. Therefore, EBA is an efficient alternative for the recovery of the target protein and removal of endotoxin from an E. coli unclarified feedstock in just one step.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fractionation through bioguided antileishmanial activity of the dichloromethane extract of Cassia fistula fruits (Leguminosae) led to the isolation of the active isoflavone biochanin A, identified by spectroscopic methods. This compound showed 50% effective concentration (EC(50)) value of 18.96 mu g/mL against promastigotes of Leishmania (L.) chagasi. The cytotoxicity of this substance against peritoneal macrophages resulted in an EC(50) value of 42.58 mu g/mL. Additionally, biochanin A presented an anti-Trypanosoma-cruzi activity, resulting in an EC(50) value of 18.32 mu g/mL and a 2.4-fold more effectiveness than benznidazole. These results contribute with novel antiprotozoal compounds for future drug design studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to assess the immunotherapeutic potential on canine visceral leishmaniasis of the Leishmune (R) vaccine, formulated with an increased adjuvant concentration (1 mg of saponin rather than 0.5 mg), 24 mongrel dogs were infected with Leishmania (L.) chagasi. The enriched-Leishmune (R) vaccine was injected on month 6, 7 and 8 after infection, when animals were seropositive and symptomatic. The control group were injected with a saline solution. Leishmune (R)-treated dogs showed significantly higher levels of anti-FML IgG antibodies (ANOVA; p < 0.0001), a higher and stable IgG2 and a decreasing IgG I response, pointing to a TH1 T cell mediated response. The vaccine had the following effects: it led to more positive delayed type hypersensitivity reactions against Leishmania lysate in vaccinated dogs (75%) than in controls (50%), to a decreased average of CD4+ Leishmania-specific lymphocytes in saline controls (32.13%) that fell outside the 95% confidence interval of the vaccinees (41.62%, CI95% 43.93-49.80) and an increased average of the clinical scores from the saline controls (17.83) that falls outside the 95% confidence interval for the Leishmune (R) immumotherapy-treated dogs (15.75, CI95% 13.97-17.53). All dogs that received the vaccine were clustered, and showed lower clinical scores and normal CD4+ counts, whereas 42% of the untreated dogs showed very diminished CD4+ and higher clinical score. The increase in clinical signs of the saline treated group was correlated with an increase in anti-FML antibodies (p < 0.0001), the parasitological evidence (p = 0.038) and a decrease in Leishinania-specific CD4+ lymphocyte proportions (p = 0.035). These results confirm the immunotherapeutic potential of the enriched-Leishmune (R) vaccine. The vaccine reduced the clinical symptoms and evidence of parasite, modulating the outcome of the infection and the dog's potential infectiosity to phlebotomines. The enriched-Leishmune (R) vaccine was subjected to a safety analysis and found to be well tolerated and safe. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In canine visceral leishmaniasis (CVL), the abnormalities most commonly observed in clinical examination on the animals are lymphadenomegaly and skin lesions. Dogs are the main domestic reservoir for the protozoon Leishmania (L.) chagasi and the skin is the main site of contamination by the vector insect. Some protozoa use apoptosis as an immunological escape mechanism. The aim of this study was to correlate the presence of apoptosis with the parasite load and with the inflammatory response in the skin and lymph nodes of dogs naturally infected with Leishmania (L.) chagasi. Thirty-three dogs from the municipality of Araçatuba (São Paulo, Brazil) were used, an endemic area for CVL. Muzzle, ear and abdominal skin and the popliteal, subscapular, iliac and mesenteric lymph nodes of symptomatic (S), oligosymptomatic (O) and asymptomatic (A) dogs were analyzed histologically. The parasite load and percentage apoptosis were evaluated using an immunohistochemical technique. Microscopically, the lymph nodes presented chronic lymphadenitis and the skin presented plasmacytic infiltrate and granulomatous foci in the superficial dermis, especially in the ear and muzzle regions. The inflammation was most severe in group S. The parasite load and apoptotic cell density were also greatest in this group. The cause of the lymphoid atrophy in these dogs was correlated with T lymphocyte apoptosis, thus leaving the dogs more susceptible to CVL. The peripheral lymph nodes presented the greatest inflammatory response. Independent of the clinical picture, the predominant inflammatory response was granulomatous and plasmacytic, both in the skin and in the peripheral lymph nodes. The ear skin presented the greatest intensity of inflammation and parasite load, followed by the muzzle skin, in group S. The ear skin area presented a non-significant difference in cell profile, with predominance of macrophages, and a significant difference from group A to groups O and S. It was seen that in these areas, there were high densities of parasites and cells undergoing apoptosis, in group S. The association between apoptosis and parasite load was not significant in the lymph nodes, but in the muzzle regions and at the ear tips, a positive correlation was seen between the parasite load and the density of cells undergoing apoptosis. The dogs in group S had the highest parasite load and the greatest number of apoptotic cells, thus suggesting that the parasite had an immune evasion mechanism, which could be proven statistically in the skin. © 2012 Elsevier B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Medicina Veterinária - FMVZ

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Medicina Veterinária - FCAV

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate the efficacy of tamoxifen in vivo in experimental models of cutaneous (CL) and visceral leishmaniasis (VL) caused by Leishmania braziliensis and Leishmania chagasi, respectively. Drug activity was assessed against intracellular amastigotes by treating infected macrophage cultures and evaluating the number of infected cells. In vivo efficacy of tamoxifen was tested in L. braziliensis-infected BALB/c mice and in L. chagasi-infected hamsters. Treatment with 20 mg/kg/day tamoxifen was administered for 15 days by the intraperitoneal route. Efficacy was evaluated through measurements of lesion size, parasite burden at the lesion site or liver and spleen and survival rate. Tamoxifen killed L. braziliensis and L. chagasi intracellular amastigotes with 50% inhibitory concentrations (IC(50)) of 1.9 +/- 0.2 and 2.4 +/- 0.3 mu M, respectively. Treatment of L. braziliensis-infected mice with tamoxifen resulted in significant reductions in lesion size and 99% decrease in parasite burden, compared with mock-treated controls. L. chagasi-infected hamsters treated with tamoxifen showed significant reductions in liver parasite load expressed as Leishman-Donovan units and 95% to 98% reduction in spleen parasite burden. All animals treated with tamoxifen survived while 100% of the mock-treated animals had died by 11 weeks after the interruption of treatment. Tamoxifen is effective in the treatment of CL and VL in rodent models.