860 resultados para Large-scale Structure


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an approach for detecting local damage in large scale frame structures by utilizing regularization methods for ill-posed problems. A direct relationship between the change in stiffness caused by local damage and the measured modal data for the damaged structure is developed, based on the perturbation method for structural dynamic systems. Thus, the measured incomplete modal data can be directly adopted in damage identification without requiring model reduction techniques, and common regularization methods could be effectively employed to solve the developed equations. Damage indicators are appropriately chosen to reflect both the location and severity of local damage in individual components of frame structures such as in brace members and at beam-column joints. The Truncated Singular Value Decomposition solution incorporating the Generalized Cross Validation method is introduced to evaluate the damage indicators for the cases when realistic errors exist in modal data measurements. Results for a 16-story building model structure show that structural damage can be correctly identified at detailed level using only limited information on the measured noisy modal data for the damaged structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abrupt and rapid ecosystem shifts (where major reorganizations of food-web and community structures occur), commonly termed regime shifts, are changes between contrasting and persisting states of ecosystem structure and function. These shifts have been increasingly reported for exploited marine ecosystems around the world from the North Pacific to the North Atlantic. Understanding the drivers and mechanisms leading to marine ecosystem shifts is crucial in developing adaptive management strategies to achieve sustainable exploitation of marine ecosystems. An international workshop on a comparative approach to analysing these marine ecosystem shifts was held at Hamburg University, Institute for Hydrobiology and Fisheries Science, Germany on 1-3 November 2010. Twenty-seven scientists from 14 countries attended the meeting, representing specialists from seven marine regions, including the Baltic Sea, the North Sea, the Barents Sea, the Black Sea, the Mediterranean Sea, the Bay of Biscay and the Scotian Shelf off the Canadian East coast. The goal of the workshop was to conduct the first large-scale comparison of marine ecosystem regime shifts across multiple regional areas, in order to support the development of ecosystem-based management strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Turbulence characteristics in the Indonesian seas on the horizontal scale of order of 100 km were calculated with a regional model of the Indonesian seas circulation in the area based on the Princeton Ocean Model (POM). As is well known, the POM incorporates the Mellor–Yamada turbulence closure scheme. The calculated characteristics are: twice the turbulence kinetic energy per unit mass, <i>q</i><sup>2</sup>; the turbulence master scale, &ell;; mixing coefficients of momentum, <i>K</i><sub>M</sub>; and temperature and salinity, <i>K</i><sub>H</sub>; etc. The analyzed turbulence has been generated essentially by the shear of large-scale ocean currents and by the large-scale wind turbulence. We focused on the analysis of turbulence around important topographic features, such as the Lifamatola Sill, the North Sangihe Ridge, the Dewakang Sill, and the North and South Halmahera Sea Sills. In general, the structure of turbulence characteristics in these regions turned out to be similar. For this reason, we have carried out a detailed analysis of the Lifamatola Sill region because dynamically this region is very important and some estimates of mixing coefficients in this area are available. <br><br> Briefly, the main results are as follows. The distribution of <i>q</i><sup>2</sup> is quite adequately reproduced by the model. To the north of the Lifamatola Sill (in the Maluku Sea) and to the south of the Sill (in the Seram Sea), large values of <i>q</i><sup>2</sup> occur in the deep layer extending several hundred meters above the bottom. The observed increase of <i>q</i><sup>2</sup> near the very bottom is probably due to the increase of velocity shear and the corresponding shear production of <i>q</i><sup>2</sup> very close to the bottom. The turbulence master scale, &ell;, was found to be constant in the main depth of the ocean, while &ell; rapidly decreases close to the bottom, as one would expect. However, in deep profiles away from the sill, the effect of topography results in the &ell; structure being unreasonably complicated as one moves towards the bottom. Values of 15 to 20 × 10<sup>&minus;4</sup> m<sup>2</sup> s<sup>-1</sup> were obtained for <i>K</i><sub>M</sub> and <i>K</i><sub>H</sub> in deep water in the vicinity of the Lifamatola Sill. These estimates agree well with basin-scale averaged values of 13.3 × 10<sup>&minus;4</sup> m<sup>2</sup> s<sup>-1</sup> found diagnostically for <i>K</i><sub>H</sub> in the deep Banda and Seram Seas (Gordon et al., 2003) and a value of 9.0 × 10<sup>&minus;4</sup> m<sup>2</sup> s<sup>-1</sup> found diagnostically for <i>K</i><sub>H</sub> for the deep Banda Sea system (van Aken et al., 1988). The somewhat higher simulated values can be explained by the presence of steep topography around the sill.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Centimeter sized arrays of gold coaxial rod-in-a tube cavities have been fabricated using anodized aluminum oxide as a template. The etching process used to create the cavities enables the production of extremely small gaps between tube and rod, on the order of 5 nm, smaller than those created by standard fabrication techniques. Normal incidence spectroscopy reveals two extinction peaks in the visible and near infrared wavelength range associated with resonant plasmonic modes excited in the structure. Numerical simulations show that the modes are associated with in-phase and out-of-phase hybridization of transverse dipolar excitations in the nanorod and in the tube.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Urothelial pathogenesis is a complex process driven by an underlying network of interconnected genes. The identification of novel genomic target regions and gene targets that drive urothelial carcinogenesis is crucial in order to improve our current limited understanding of urothelial cancer (UC) on the molecular level. The inference of genome-wide gene regulatory networks (GRN) from large-scale gene expression data provides a promising approach for a detailed investigation of the underlying network structure associated to urothelial carcinogenesis.

METHODS: In our study we inferred and compared three GRNs by the application of the BC3Net inference algorithm to large-scale transitional cell carcinoma gene expression data sets from Illumina RNAseq (179 samples), Illumina Bead arrays (165 samples) and Affymetrix Oligo microarrays (188 samples). We investigated the structural and functional properties of GRNs for the identification of molecular targets associated to urothelial cancer.

RESULTS: We found that the urothelial cancer (UC) GRNs show a significant enrichment of subnetworks that are associated with known cancer hallmarks including cell cycle, immune response, signaling, differentiation and translation. Interestingly, the most prominent subnetworks of co-located genes were found on chromosome regions 5q31.3 (RNAseq), 8q24.3 (Oligo) and 1q23.3 (Bead), which all represent known genomic regions frequently deregulated or aberated in urothelial cancer and other cancer types. Furthermore, the identified hub genes of the individual GRNs, e.g., HID1/DMC1 (tumor development), RNF17/TDRD4 (cancer antigen) and CYP4A11 (angiogenesis/ metastasis) are known cancer associated markers. The GRNs were highly dataset specific on the interaction level between individual genes, but showed large similarities on the biological function level represented by subnetworks. Remarkably, the RNAseq UC GRN showed twice the proportion of significant functional subnetworks. Based on our analysis of inferential and experimental networks the Bead UC GRN showed the lowest performance compared to the RNAseq and Oligo UC GRNs.

CONCLUSION: To our knowledge, this is the first study investigating genome-scale UC GRNs. RNAseq based gene expression data is the data platform of choice for a GRN inference. Our study offers new avenues for the identification of novel putative diagnostic targets for subsequent studies in bladder tumors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An experimental study measuring the performance and wake characteristics of a 1:10th scale horizontal axis turbine in steady uniform flow conditions is presented in this paper.
Large scale towing tests conducted in a lake were devised to model the performance of the tidal turbine and measure the wake produced. As a simplification of the marine environment, towing the turbine in a lake provides approximately steady, uniform inflow conditions. A 16m long x 6m wide catamaran was constructed for the test programme. This doubled as a towing rig and flow measurement platform, providing a fixed frame of reference for measurements in the wake of a horizontal axis tidal turbine. Velocity mapping was conducted using Acoustic Doppler Velocimeters.
The results indicate varying the inflow speed yielded little difference in the efficiency of the turbine or the wake velocity deficit characteristics provided the same tip speed ratio is used. Increasing the inflow velocity from 0.9 m/s to 1.2 m/s influenced the turbulent wake characteristics more markedly. The results also demonstrate that the flow field in the wake of a horizontal axis tidal turbine is strongly affected by the turbine support structure

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding links between the El Nino-Southern Oscillation (ENSO) and snow would be useful for seasonal forecasting, but also for understanding natural variability and interpreting climate change predictions. Here, a 545-year run of the general circulation model HadCM3, with prescribed external forcings and fixed greenhouse gas concentrations, is used to explore the impact of ENSO on snow water equivalent (SWE) anomalies. In North America, positive ENSO events reduce the mean SWE and skew the distribution towards lower values, and vice versa during negative ENSO events. This is associated with a dipole SWE anomaly structure, with anomalies of opposite sign centered in western Canada and the central United States. In Eurasia, warm episodes lead to a more positively skewed distribution and the mean SWE is raised. Again, the opposite effect is seen during cold episodes. In Eurasia the largest anomalies are concentrated in the Himalayas. These correlations with February SWE distribution are seen to exist from the previous June-July-August (JJA) ENSO index onwards, and are weakly detected in 50-year subsections of the control run, but only a shifted North American response can be detected in the anaylsis of 40 years of ERA40 reanalysis data. The ENSO signal in SWE from the long run could still contribute to regional predictions although it would be a weak indicator only

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic clouds are a class of interplanetary coronal mass ejections (CME) predominantly characterised by a smooth rotation in the magnetic field direction, indicative of a magnetic flux rope structure. Many magnetic clouds, however, also contain sharp discontinuities within the smoothly varying magnetic field, suggestive of narrow current sheets. In this study we present observations and modelling of magnetic clouds with strong current sheet signatures close to the centre of the apparent flux rope structure. Using an analytical magnetic flux rope model, we demonstrate how such current sheets can form as a result of a cloud’s kinematic propagation from the Sun to the Earth, without any external forces or influences. This model is shown to match observations of four particular magnetic clouds remarkably well. The model predicts that current sheet intensity increases for increasing CME angular extent and decreasing CME radial expansion speed. Assuming such current sheets facilitate magnetic reconnection, the process of current sheet formation could ultimately lead a single flux rope becoming fragmented into multiple flux ropes. This change in topology has consequences for magnetic clouds as barriers to energetic particle propagation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of orography on the structure of stationary planetary Rossby waves is studied in the context of a contour dynamics model of the large-scale atmospheric flow. Orography of infinitesimal and finite amplitude is studied using analytical and numerical techniques. Three different types of orography are considered: idealized orography in the form of a global wave, idealized orography in the form of a local table mountain, and the earth's orography. The study confirms the importance of resonances, both in the infinitesimal orography and in the finite orography cases. With finite orography the stationary waves organize themselves into a one-dimensional set of solutions, which due to the resonances, is piecewise connected. It is pointed out that these stationary waves could be relevant for atmospheric regimes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The EU-funded research project ALARM will develop and test methods and protocols for the assessment of large-scale environmental risks in order to minimise negative human impacts. Research focuses on the assessment and forecast of changes in biodiversity and in the structure, function, and dynamics of ecosystems. This includes the relationships between society, the economy and biodiversity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the 1990s the Message Passing Interface Forum defined MPI bindings for Fortran, C, and C++. With the success of MPI these relatively conservative languages have continued to dominate in the parallel computing community. There are compelling arguments in favour of more modern languages like Java. These include portability, better runtime error checking, modularity, and multi-threading. But these arguments have not converted many HPC programmers, perhaps due to the scarcity of full-scale scientific Java codes, and the lack of evidence for performance competitive with C or Fortran. This paper tries to redress this situation by porting two scientific applications to Java. Both of these applications are parallelized using our thread-safe Java messaging system—MPJ Express. The first application is the Gadget-2 code, which is a massively parallel structure formation code for cosmological simulations. The second application uses the finite-domain time-difference method for simulations in the area of computational electromagnetics. We evaluate and compare the performance of the Java and C versions of these two scientific applications, and demonstrate that the Java codes can achieve performance comparable with legacy applications written in conventional HPC languages. Copyright © 2009 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The time-mean quasi-geostrophic potential vorticity equation of the atmospheric flow on isobaric surfaces can explicitly include an atmospheric (internal) forcing term of the stationary-eddy flow. In fact, neglecting some non-linear terms in this equation, this forcing can be mathematically expressed as a single function, called Empirical Forcing Function (EFF), which is equal to the material derivative of the time-mean potential vorticity. Furthermore, the EFF can be decomposed as a sum of seven components, each one representing a forcing mechanism of different nature. These mechanisms include diabatic components associated with the radiative forcing, latent heat release and frictional dissipation, and components related to transient eddy transports of heat and momentum. All these factors quantify the role of the transient eddies in forcing the atmospheric circulation. In order to assess the relevance of the EFF in diagnosing large-scale anomalies in the atmospheric circulation, the relationship between the EFF and the occurrence of strong North Atlantic ridges over the Eastern North Atlantic is analyzed, which are often precursors of severe droughts over Western Iberia. For such events, the EFF pattern depicts a clear dipolar structure over the North Atlantic; cyclonic (anticyclonic) forcing of potential vorticity is found upstream (downstream) of the anomalously strong ridges. Results also show that the most significant components are related to the diabatic processes. Lastly, these results highlight the relevance of the EFF in diagnosing large-scale anomalies, also providing some insight into their interaction with different physical mechanisms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The relationship between the structure and function of biological networks constitutes a fundamental issue in systems biology. Particularly, the structure of protein-protein interaction networks is related to important biological functions. In this work, we investigated how such a resilience is determined by the large scale features of the respective networks. Four species are taken into account, namely yeast Saccharomyces cerevisiae, worm Caenorhabditis elegans, fly Drosophila melanogaster and Homo sapiens. We adopted two entropy-related measurements (degree entropy and dynamic entropy) in order to quantify the overall degree of robustness of these networks. We verified that while they exhibit similar structural variations under random node removal, they differ significantly when subjected to intentional attacks (hub removal). As a matter of fact, more complex species tended to exhibit more robust networks. More specifically, we quantified how six important measurements of the networks topology (namely clustering coefficient, average degree of neighbors, average shortest path length, diameter, assortativity coefficient, and slope of the power law degree distribution) correlated with the two entropy measurements. Our results revealed that the fraction of hubs and the average neighbor degree contribute significantly for the resilience of networks. In addition, the topological analysis of the removed hubs indicated that the presence of alternative paths between the proteins connected to hubs tend to reinforce resilience. The performed analysis helps to understand how resilience is underlain in networks and can be applied to the development of protein network models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coupled-cluster theory provides one of the most successful concepts in electronic-structure theory. This work covers the parallelization of coupled-cluster energies, gradients, and second derivatives and its application to selected large-scale chemical problems, beside the more practical aspects such as the publication and support of the quantum-chemistry package ACES II MAB and the design and development of a computational environment optimized for coupled-cluster calculations. The main objective of this thesis was to extend the range of applicability of coupled-cluster models to larger molecular systems and their properties and therefore to bring large-scale coupled-cluster calculations into day-to-day routine of computational chemistry. A straightforward strategy for the parallelization of CCSD and CCSD(T) energies, gradients, and second derivatives has been outlined and implemented for closed-shell and open-shell references. Starting from the highly efficient serial implementation of the ACES II MAB computer code an adaptation for affordable workstation clusters has been obtained by parallelizing the most time-consuming steps of the algorithms. Benchmark calculations for systems with up to 1300 basis functions and the presented applications show that the resulting algorithm for energies, gradients and second derivatives at the CCSD and CCSD(T) level of theory exhibits good scaling with the number of processors and substantially extends the range of applicability. Within the framework of the ’High accuracy Extrapolated Ab initio Thermochemistry’ (HEAT) protocols effects of increased basis-set size and higher excitations in the coupled- cluster expansion were investigated. The HEAT scheme was generalized for molecules containing second-row atoms in the case of vinyl chloride. This allowed the different experimental reported values to be discriminated. In the case of the benzene molecule it was shown that even for molecules of this size chemical accuracy can be achieved. Near-quantitative agreement with experiment (about 2 ppm deviation) for the prediction of fluorine-19 nuclear magnetic shielding constants can be achieved by employing the CCSD(T) model together with large basis sets at accurate equilibrium geometries if vibrational averaging and temperature corrections via second-order vibrational perturbation theory are considered. Applying a very similar level of theory for the calculation of the carbon-13 NMR chemical shifts of benzene resulted in quantitative agreement with experimental gas-phase data. The NMR chemical shift study for the bridgehead 1-adamantyl cation at the CCSD(T) level resolved earlier discrepancies of lower-level theoretical treatment. The equilibrium structure of diacetylene has been determined based on the combination of experimental rotational constants of thirteen isotopic species and zero-point vibrational corrections calculated at various quantum-chemical levels. These empirical equilibrium structures agree to within 0.1 pm irrespective of the theoretical level employed. High-level quantum-chemical calculations on the hyperfine structure parameters of the cyanopolyynes were found to be in excellent agreement with experiment. Finally, the theoretically most accurate determination of the molecular equilibrium structure of ferrocene to date is presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bioinformatics, in the last few decades, has played a fundamental role to give sense to the huge amount of data produced. Obtained the complete sequence of a genome, the major problem of knowing as much as possible of its coding regions, is crucial. Protein sequence annotation is challenging and, due to the size of the problem, only computational approaches can provide a feasible solution. As it has been recently pointed out by the Critical Assessment of Function Annotations (CAFA), most accurate methods are those based on the transfer-by-homology approach and the most incisive contribution is given by cross-genome comparisons. In the present thesis it is described a non-hierarchical sequence clustering method for protein automatic large-scale annotation, called “The Bologna Annotation Resource Plus” (BAR+). The method is based on an all-against-all alignment of more than 13 millions protein sequences characterized by a very stringent metric. BAR+ can safely transfer functional features (Gene Ontology and Pfam terms) inside clusters by means of a statistical validation, even in the case of multi-domain proteins. Within BAR+ clusters it is also possible to transfer the three dimensional structure (when a template is available). This is possible by the way of cluster-specific HMM profiles that can be used to calculate reliable template-to-target alignments even in the case of distantly related proteins (sequence identity < 30%). Other BAR+ based applications have been developed during my doctorate including the prediction of Magnesium binding sites in human proteins, the ABC transporters superfamily classification and the functional prediction (GO terms) of the CAFA targets. Remarkably, in the CAFA assessment, BAR+ placed among the ten most accurate methods. At present, as a web server for the functional and structural protein sequence annotation, BAR+ is freely available at http://bar.biocomp.unibo.it/bar2.0.