963 resultados para LS-DYNA


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a study on the bond behaviour of FRP-concrete bonded joints under static and dynamic loadings, by developing a meso-scale finite element model using the K&C concrete damage model in LS-DYNA. A significant number of single shear experiments under static pull-off loading were modelled with an extensive parametric study covering key factors in the K&C model, including the crack band width, the compressive fracture energy and the shear dilatation factor. It is demonstrated that the developed model can satisfactorily simulate the static debonding behaviour, in terms of mesh objectivity, the load-carrying capacity and the local bond-slip behaviour, provided that proper consideration is given to the selection of crack band width and shear dilatation factor. A preliminary study of the effect of the dynamic loading rate on the debonding behaviour was also conducted by considering a dynamic increase factor (DIF) for the concrete strength as a function of strain rate. It is shown that a higher loading rate leads to a higher load-carrying capacity, a longer effective bond length, and a larger damaged area of concrete in the single shear loading scenario.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a study on concrete fracture and the associated mesh sensitivity using the finite element (FE) method with a local concrete model in both tension (Mode I) and compression.To enable the incorporation of dynamic loading, the FE model is developed using a transient dynamic analysis code LS-DYNA Explicit.A series of investigations have been conducted on typical fracture scenarios to evaluate the model performances and calibration of relevant parameters.The K&C damage model was adopted because it is a comprehensive local concrete model which allows the user to change the crack band width, fracture energy and rate dependency of the material.Compressive localisation modelling in numerical modelling is also discussed in detail in relation to localisation.An impact test specimen is modelled.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Roadside safety barriers designs are tested with passenger cars in Europe using standard EN1317 in which the impact angle for normal, high and very high containment level tests is 20°. In comparison to EN1317, the US standard MASH has higher impact angles for cars and pickups (25°) and different vehicle masses. Studies in Europe (RISER) and the US have shown values for the 90th percentile impact angle of 30°–34°. Thus, the limited evidence available suggests that the 20° angle applied in EN 1317 may be too low.
The first goal of this paper is to use the US NCHRP database (Project NCHRP 17–22) to assess the distribution of impact angle and collision speed in recent ROR accidents. Second, based on the findings of the statistical analysis and on analysis of impact angles and speeds in the literature, an LS-DYNA finite element analysis was carried out to evaluate the normal containment level of concrete barriers in non-standard collisions. The FE model was validated against a crash test of a portable concrete barrier carried out at the UK Transport Research Laboratory (TRL).
The accident data analysis for run-off road accidents indicates that a substantial proportion of accidents have an impact angle in excess of 20°. The baseline LS-DYNA model showed good comparison with experimental acceleration severity index (ASI) data and the parametric analysis indicates a very significant influence of impact angle on ASI. Accordingly, a review of European run-off road accidents and the configuration of EN 1317 should be performed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The study envisaged herein contains the numerical investigations on Perforated Plate (PP) as well as numerical and experimental investigations on Perforated Plate with Lining (PPL) which has a variety of applications in underwater engineering especially related to defence applications. Finite element method has been adopted as the tool for analysis of PP and PPL. The commercial software ANSYS has been used for static and free vibration response evaluation, whereas ANSYS LS-DYNA has been used for shock analysis. SHELL63, SHELL93, SOLID45, SOLSH190, BEAM188 and FLUID30 finite elements available in the ANSYS library as well as SHELL193 and SOLID194 available in the ANSYS LS-DYNA library have been made use of. Unit cell of the PP and PPL which is a miniature of the original plate with 16 perforations have been used. Based upon the convergence characteristics, the utility of SHELL63 element for the analysis of PP and PPL, and the required mesh density are brought out. The effect of perforation, geometry and orientation of perforation, boundary conditions and lining plate are investigated for various configurations. Stress concentration and deflection factor are also studied. Based on these investigations, stadium geometry perforation with horizontal orientation is recommended for further analysis.Linear and nonlinear static analysis of PP and PPL subjected to unit normal pressure has been carried out besides the free vibration analysis. Shock analysis has also been carried out on these structural components. The analytical model measures 0.9m x 0.9m with stiffener of 0.3m interval. The influence of finite element, boundary conditions, and lining plate on linear static response has been estimated and presented. Comparison of behavior of PP and PPL in the nonlinear strain regime has been made using geometric nonlinear analysis. Free vibration analysis of the PP and PPL has been carried out ‘in vacuum’ condition and in water backed condition, and the influence of water backed condition and effect of perforation on natural frequency have been investigated.Based upon the studies on the vibration characteristics of NPP, PP and PPL in water backed condition and ‘in vacuum’ condition, the reduction in the natural frequency of the plate in immersed condition has been rightly brought out. The necessity to introduce the effect of water medium in the analysis of water backed underwater structure has been highlighted.Shock analysis of PP and PPL for three explosives viz., PEK, TNT and C4 has been carried out and deflection and stresses on plate as well as free field pressure have been estimated using ANSYS LS-DYNA. The effect of perforations and the effect of lining plate have been predicted. Experimental investigations of the measurement of free field pressure using PPL have been conducted in a shock tank. Free field pressure has been measured and has been validated with finite element analysis results. Besides, an experiment has been carried out on PPL, for the comparison of the static deflection predicted by finite element analysis.The distribution of the free field pressure and the estimation of differential pressure from experimentation and the provision for treating the differential pressure as the resistance, as a part of the design load for PPL, has been brought out.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A avaliação da solicitação produzida por explosões, assim como da resposta de estruturas, são temas de muito interesse na engenharia atualmente, tanto pela quantidade crescente de acidentes relacionados com explosões quanto pelas ações terroristas muitas vezes vinculadas a estes tipos de ações. Neste contexto, o presente trabalho tem por objetivo explorar técnicas de análise tanto na modelagem da excitação quanto na resposta de estruturas consideradas como alvos. Para isto, são utilizadas metodologias de diferentes tipos: implementações baseadas em sistema de elementos finitos comerciais como Ansys [2000] e LS-Dyna [2003] e técnicas simplificativas que permitem realizar uma avaliação preliminar. As aplicações consideradas são indicadas a seguir: • Análise da Resposta de Estruturas Laminares Submetidas à Ação de Cargas Explosivas: determina-se a pressão produzida por explosivos sólidos a certa distância do epicentro, através de métodos simplificados, determinando a resposta esperada em placas retangulares; • Efeito da Pressão Interna em Vasos de Pressão (Extintores de Incêndio): comparando resultados numéricos e experimentais verifica-se a influência da pressão interna nas propriedades dinâmicas do sistema; • Estudo de Um Vaso Esférico de GLP Sob Ação de Uma Carga Explosiva: aplica-se a ação de uma onda explosiva produzida por um gás inflamável pesado sobre uma estrutura de vaso de pressão esférico com fluido e gás em seu interior, determinando sua resposta, avaliando também a influência de diferentes quantidades de líquido e pressão interna na resposta da estrutura; • Modelamento de uma Camada de Solo / Propagação das Ondas: verifica-se o comportamento da propagação de ondas em um meio elástico, comparando valores encontrados em testes experimentais. Analisa-se numericamente o efeito da inserção de uma valeta na atenuação de tais ondas; • Simulação Numérica Completa de uma Explosão: modela-se um semi-espaço submetido à ação de um explosivo sólido sobre sua superfície, avaliando os campos de pressão gerados. Ao final de cada aplicação são apresentadas conclusões parciais obtidas e as possibilidades de trabalhos futuros vislumbrados. Finalmente, conclui-se que as técnicas empregadas para as simulações são extremamente eficientes, considerando conhecidos todos os parâmetros envolvidos em cada modelo. Neste ponto é fundamental o trabalho do engenheiro, utilizando-se de seus conhecimentos técnicos para transformação do evento real em um modelo numérico, considerando e selecionando as simplificações necessárias.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

There has been a significant increase in the number of facial fractures stemming from sport activities in recent years, with the nasal bone one of the most affected structures. Researchers recommend the use of a nose protector, but there is no standardization regarding the material employed. Clinical experience has demonstrated that a combination of a flexible and rigid layer of ethylene vinyl acetate (EVA) offers both comfort and safety to practitioners of sports. The aim of the present study was the investigation into the stresses generated by the impact of a rigid body on the nasal bone on models with and without an EVA protector. For such, finite element analysis was employed. A craniofacial model was constructed from images obtained through computed tomography. The nose protector was modeled with two layers of EVA (1 mm of rigid EVA over 2 mm of flexible EVA), following the geometry of the soft tissue. Finite element analysis was performed using the LS Dyna program. The bone and rigid EVA were represented as elastic linear material, whereas the soft tissues and flexible EVA were represented as hyperelastic material. The impact from a rigid sphere on the frontal region of the face was simulated with a constant velocity of 20 m s-1 for 9.1 mu s. The model without the protector served as the control. The distribution of maximal stress of the facial bones was recorded. The maximal stress on the nasal bone surpassed the breaking limit of 0.130.34 MPa on the model without a protector, while remaining below this limit on the model with the protector. Thus, the nose protector made from both flexible and rigid EVA proved effective at protecting the nasal bones under high-impact conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Preformed structural reinforcements have shown good performance in crash tests, where the great advantage is their weight. These reinforcements are designed with the aim of increasing the rigidity of regions with large deformations, thus stabilising sections of the vehicle that work as load path during impact. The objective of this work is to show the application of structural reinforcements made of polymeric material PA66 in the field of vehicle safety, through finite element simulations. Simulations of frontal impact at 50 km/h and in ODB (offset deformable barrier) at 57 km/h configurations (standards such as ECE R-94 and ECE R-12) were performed in the software LS-DYNA R (R) and MADYMO (R). The simulations showed that the use of polymeric reinforcements leads to a 70% reduction in A-pillar intrusion, a 65% reduction in the displacement of the steering column and a 59% reduction in the deformation in the region of the occupant legs and feet. The level of occupant injuries was analysed by MADYMO (R) software, and a reduction of 23.5% in the chest compression and 80% in the tibia compression were verified. According to the standard, such conditions lead to an improvement in the occupant safety in a vehicle collision event.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sloshing describes the movement of liquids inside partially filled tanks, generating dynamic loads on the tank structure. The resulting impact pressures are of great importance in assessing structural strength, and their correct evaluation still represents a challenge for the designer due to the high level of nonlinearities involved, with complex free surface deformations, violent impact phenomena and influence of air trapping. In the present paper, a set of two-dimensional cases, for which experimental results are available, is considered to assess the merits and shortcomings of different numerical methods for sloshing evaluation, namely two commercial RANS solvers (FLOW-3D and LS-DYNA), and two academic software (Smoothed Particle Hydrodynamics and RANS). Impact pressures at various critical locations and global moment induced by water motion in a partially filled rectangular tank, subject to a simple harmonic rolling motion, are evaluated and predictions are compared with experimental measurements. 2012 Copyright Taylor and Francis Group, LLC.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Los fenómenos de impacto y explosión sobre estructuras de hormigón tienen efectos en muchos casos catastróficos a pesar de su reducida probabilidad. Las estructuras de hormigón no suelen estar diseñadas para resistir este tipo de solicitaciones dinámicas. El análisis numérico mediante elementos finitos con integración explícita permite una aproximación suficiente a los efectos de la onda explosiva sobre pilares y forjados de estructuras reticuladas de hormigón. Los materiales recientemente implementados en LS-Dyna para hormigón como el CSCM [1], para elementos de continuo 3D, y la formulación que proporciona la debida compatibilidad con los elementos viga de acero dispuestos de forma segregada, permite estudiar de forma realista modelos detallados de pilares y forjados. Pero las limitaciones computacionales hacen inviable emplear estos métodos en estructuras completas. Como alternativa es posible usar modelos de elementos estructurales de vigas y láminas para el análisis de estas estructuras. Sin embargo es necesario un adecuado ajuste de parámetros y propiedades en estos modelos. Este trabajo muestra un método con en el que obtener modelos de elementos estructurales, elementos viga y lámina, usando modelos de material [2] adecuados para ellos, junto a un procedimiento para incluir la armadura de forma adecuada. Utilizando este método es posible representar con suficiente aproximación el comportamiento de modelos detallados realistas de forjados y pilares de estructuras reticuladas de hormigón frente a acciones explosivas, posibilitando el análisis de una estructura completa frente a explosión.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The threat of impact or explosive loads is regrettably a scenario to be taken into account in the design of lifeline or critical civilian buildings. These are often made of concrete and not specifically designed for military threats. Numerical simulation of such cases may be undertaken with the aid of state of the art explicit dynamic codes, however several difficult challenges are inherent to such models: the material modeling for the concrete anisotropic failure, consideration of reinforcement bars and important structural details, adequate modeling of pressure waves from explosions in complex geometries, and efficient solution to models of complete buildings which can realistically assess failure modes. In this work we employ LS-Dyna for calculation, with Lagrangian finite elements and explicit time integration. Reinforced concrete may be represented in a fairly accurate fashion with recent models such as CSCM model [1] and segregated rebars constrained within the continuum mesh. However, such models cannot be realistically employed for complete models of large buildings, due to limitations of time and computer resources. The use of structural beam and shell elements for this purpose would be the obvious solution, with much lower computational cost. However, this modeling requires careful calibration in order to reproduce adequately the highly nonlinear response of structural concrete members, including bending with and without compression, cracking or plastic crushing, plastic deformation of reinforcement, erosion of vanished elements etc. The main objective of this work is to provide a strategy for modeling such scenarios based on structural elements, using available material models for structural elements [2] and techniques to include the reinforcement in a realistic way. These models are calibrated against fully three-dimensional models and shown to be accurate enough. At the same time they provide the basis for realistic simulation of impact and explosion on full-scale buildings

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En el presente trabajo se presenta un estudio experimental y numérico de impactos balísticos sobre placas de acero inoxidable martensítico a altas temperaturas (400ºC y 700ºC), que pone de manifiesto la importancia del ablandamiento térmico en simulaciones de impactos a altas temperaturas. Mediante un estudio metalográfico de la zona de impacto, se ha observado la aparición de bandas adiabáticas de cortante formadas por el aumento brusco de la temperatura debido a la acumulación del trabajo plástico en el interior del material. La correcta predicción en la formación de estas bandas durante el proceso de penetración es crítica a la hora de obtener resultados representativos de los experimentos realizados. Basándose en datos experimentales de ensayos previamente realizados, se ha calibrado un modelo de material de Johnson-Cook (JC) para su uso con simulaciones numéricas en el código no lineal de elementos finitos LSDYNA. Mediante estas simulaciones numéricas se demuestra la importancia del ablandamiento térmico en el proceso de perforación de placas, al igual que la incapacidad que un modelo tipo JC tiene para representar el dicho ablandamiento para material estudiado. Esta investigación presenta, finalmente, una modificación a un modelo tipo JC programado como subrutina de material de usuario para LS-DYNA que permite simular correctamente estos procesos de impacto a alta temperatura

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An experimental and numerical study of ballistic impacts on steel plates at various temperatures (700ºC, 400ºC and room temperature) has been carried out. The motivation for this work is the blade‐off event that may occur inside a jet engine turbine. However, as a first attempt to understand this complex loading process, a somewhat simpler approach is carried out in the present work. The material used in this study is the FV535 martensitic stainless steel, which is one of the most commonly used materials for turbine casings. Based on material test data, a Modified Johnson‐Cook (MJC) model was calibrated for numerical simulations using the LS‐DYNA explicit finite element code (see Figure 1). To check the mesh size sensitivity, 2D axisymmetric finite element models with three different mesh sizes and configurations were used for the various temperatures. Two fixed meshes with 64 and 128 elements over the 2mm thick plate and one mesh with 32 elements over the thickness with adaptive remeshing were used in the simulations. The formation of adiabatic shear bands in the perforation process has been found critical in order to achieve good results. Adiabatic shear bands are formed by the temperature rise due to the accumulation of plastic strain during impact (see Figure 2). The influence of the thermal softening in the plastic model has hence been analyzed for the room temperature impact tests, where the temperature gradient is highest

Relevância:

60.00% 60.00%

Publicador:

Resumo:

En el presente trabajo se presenta un estudio experimental y numérico de impactos balísticos sobre placas de acero inoxidable martensítico a altas temperaturas (400ºC y 700ºC), que pone de manifiesto la importancia del ablandamiento térmico en simulaciones de impactos a altas temperaturas. Mediante un estudio metalográfico de la zona de impacto, se ha observado la aparición de bandas adiabáticas de cortante formadas por el aumento brusco de la temperatura debido a la acumulación del trabajo plástico en el interior del material. La correcta predicción en la formación de estas bandas durante el proceso de penetración es crítica a la hora de obtener resultados representativos de los experimentos realizados. Basándose en datos experimentales de ensayos previamente realizados, se ha calibrado un modelo de material de Johnson-Cook (JC) para su uso con simulaciones numéricas en el código no lineal de elementos finitos LSDYNA. Mediante estas simulaciones numéricas se demuestra la importancia del ablandamiento térmico en el proceso de perforación de placas, al igual que la incapacidad que un modelo tipo JC tiene para representar el dicho ablandamiento para material estudiado. Esta investigación presenta, finalmente, una modificación a un modelo tipo JC programado como subrutina de material de usuario para LS-DYNA que permite simular correctamente estos procesos de impacto a alta temperatura.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The new generation jet engines operate at highly demanding working conditions. Such conditions need very precise design which implies an exhaustive study of the engine materials and behaviour in their extreme working conditions. With this purpose, this work intends to describe a numerically-based calibration of the widely-used Johnson–Cook fracture model, as well as its validation through high temperature ballistic impact tests. To do so, a widely-used turbine casing material is studied. This material is the Firth Vickers 535 martensitic stainless steel. Quasi-static tensile tests at various temperatures in a universal testing machine, as well as dynamic tests in a Split Hopkinson Pressure Bar, are carried out at different triaxialities. Using ABAQUS/Standard and LS-DYNA numerical codes, experimental data are matched. This method allows the researcher to obtain critical data of equivalent plastic strain and triaxility, which allows for more precise calibration of the Johnson–Cook fracture model. Such enhancement allows study of the fracture behaviour of the material across its usage temperature range.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

El hormigón es uno de los materiales de construcción más empleados en la actualidad debido a sus buenas prestaciones mecánicas, moldeabilidad y economía de obtención, entre otras ventajas. Es bien sabido que tiene una buena resistencia a compresión y una baja resistencia a tracción, por lo que se arma con barras de acero para formar el hormigón armado, material que se ha convertido por méritos propios en la solución constructiva más importante de nuestra época. A pesar de ser un material profusamente utilizado, hay aspectos del comportamiento del hormigón que todavía no son completamente conocidos, como es el caso de su respuesta ante los efectos de una explosión. Este es un campo de especial relevancia, debido a que los eventos, tanto intencionados como accidentales, en los que una estructura se ve sometida a una explosión son, por desgracia, relativamente frecuentes. La solicitación de una estructura ante una explosión se produce por el impacto sobre la misma de la onda de presión generada en la detonación. La aplicación de esta carga sobre la estructura es muy rápida y de muy corta duración. Este tipo de acciones se denominan cargas impulsivas, y pueden ser hasta cuatro órdenes de magnitud más rápidas que las cargas dinámicas impuestas por un terremoto. En consecuencia, no es de extrañar que sus efectos sobre las estructuras y sus materiales sean muy distintos que las que producen las cargas habitualmente consideradas en ingeniería. En la presente tesis doctoral se profundiza en el conocimiento del comportamiento material del hormigón sometido a explosiones. Para ello, es crucial contar con resultados experimentales de estructuras de hormigón sometidas a explosiones. Este tipo de resultados es difícil de encontrar en la literatura científica, ya que estos ensayos han sido tradicionalmente llevados a cabo en el ámbito militar y los resultados obtenidos no son de dominio público. Por otra parte, en las campañas experimentales con explosiones llevadas a cabo por instituciones civiles el elevado coste de acceso a explosivos y a campos de prueba adecuados no permite la realización de ensayos con un elevado número de muestras. Por este motivo, la dispersión experimental no es habitualmente controlada. Sin embargo, en elementos de hormigón armado sometidos a explosiones, la dispersión experimental es muy acusada, en primer lugar, por la propia heterogeneidad del hormigón, y en segundo, por la dificultad inherente a la realización de ensayos con explosiones, por motivos tales como dificultades en las condiciones de contorno, variabilidad del explosivo, o incluso cambios en las condiciones atmosféricas. Para paliar estos inconvenientes, en esta tesis doctoral se ha diseñado un novedoso dispositivo que permite ensayar hasta cuatro losas de hormigón bajo la misma detonación, lo que además de proporcionar un número de muestras estadísticamente representativo, supone un importante ahorro de costes. Con este dispositivo se han ensayado 28 losas de hormigón, tanto armadas como en masa, de dos dosificaciones distintas. Pero además de contar con datos experimentales, también es importante disponer de herramientas de cálculo para el análisis y diseño de estructuras sometidas a explosiones. Aunque existen diversos métodos analíticos, hoy por hoy las técnicas de simulación numérica suponen la alternativa más avanzada y versátil para el cálculo de elementos estructurales sometidos a cargas impulsivas. Sin embargo, para obtener resultados fiables es crucial contar con modelos constitutivos de material que tengan en cuenta los parámetros que gobiernan el comportamiento para el caso de carga en estudio. En este sentido, cabe destacar que la mayoría de los modelos constitutivos desarrollados para el hormigón a altas velocidades de deformación proceden del ámbito balístico, donde dominan las grandes tensiones de compresión en el entorno local de la zona afectada por el impacto. En el caso de los elementos de hormigón sometidos a explosiones, las tensiones de compresión son mucho más moderadas, siendo las tensiones de tracción generalmente las causantes de la rotura del material. En esta tesis doctoral se analiza la validez de algunos de los modelos disponibles, confirmando que los parámetros que gobiernan el fallo de las losas de hormigón armado ante explosiones son la resistencia a tracción y su ablandamiento tras rotura. En base a los resultados anteriores se ha desarrollado un modelo constitutivo para el hormigón ante altas velocidades de deformación, que sólo tiene en cuenta la rotura por tracción. Este modelo parte del de fisura cohesiva embebida con discontinuidad fuerte, desarrollado por Planas y Sancho, que ha demostrado su capacidad en la predicción de la rotura a tracción de elementos de hormigón en masa. El modelo ha sido modificado para su implementación en el programa comercial de integración explícita LS-DYNA, utilizando elementos finitos hexaédricos e incorporando la dependencia de la velocidad de deformación para permitir su utilización en el ámbito dinámico. El modelo es estrictamente local y no requiere de remallado ni conocer previamente la trayectoria de la fisura. Este modelo constitutivo ha sido utilizado para simular dos campañas experimentales, probando la hipótesis de que el fallo de elementos de hormigón ante explosiones está gobernado por el comportamiento a tracción, siendo de especial relevancia el ablandamiento del hormigón. Concrete is nowadays one of the most widely used building materials because of its good mechanical properties, moldability and production economy, among other advantages. As it is known, it has high compressive and low tensile strengths and for this reason it is reinforced with steel bars to form reinforced concrete, a material that has become the most important constructive solution of our time. Despite being such a widely used material, there are some aspects of concrete performance that are not yet fully understood, as it is the case of its response to the effects of an explosion. This is a topic of particular relevance because the events, both intentional and accidental, in which a structure is subjected to an explosion are, unfortunately, relatively common. The loading of a structure due to an explosive event occurs due to the impact of the pressure shock wave generated in the detonation. The application of this load on the structure is very fast and of very short duration. Such actions are called impulsive loads, and can be up to four orders of magnitude faster than the dynamic loads imposed by an earthquake. Consequently, it is not surprising that their effects on structures and materials are very different than those that cause the loads usually considered in engineering. This thesis broadens the knowledge about the material behavior of concrete subjected to explosions. To that end, it is crucial to have experimental results of concrete structures subjected to explosions. These types of results are difficult to find in the scientific literature, as these tests have traditionally been carried out by armies of different countries and the results obtained are classified. Moreover, in experimental campaigns with explosives conducted by civil institutions the high cost of accessing explosives and the lack of proper test fields does not allow for the testing of a large number of samples. For this reason, the experimental scatter is usually not controlled. However, in reinforced concrete elements subjected to explosions the experimental dispersion is very pronounced. First, due to the heterogeneity of concrete, and secondly, because of the difficulty inherent to testing with explosions, for reasons such as difficulties in the boundary conditions, variability of the explosive, or even atmospheric changes. To overcome these drawbacks, in this thesis we have designed a novel device that allows for testing up to four concrete slabs under the same detonation, which apart from providing a statistically representative number of samples, represents a significant saving in costs. A number of 28 slabs were tested using this device. The slabs were both reinforced and plain concrete, and two different concrete mixes were used. Besides having experimental data, it is also important to have computational tools for the analysis and design of structures subjected to explosions. Despite the existence of several analytical methods, numerical simulation techniques nowadays represent the most advanced and versatile alternative for the assessment of structural elements subjected to impulsive loading. However, to obtain reliable results it is crucial to have material constitutive models that take into account the parameters that govern the behavior for the load case under study. In this regard it is noteworthy that most of the developed constitutive models for concrete at high strain rates arise from the ballistic field, dominated by large compressive stresses in the local environment of the area affected by the impact. In the case of concrete elements subjected to an explosion, the compressive stresses are much more moderate, while tensile stresses usually cause material failure. This thesis discusses the validity of some of the available models, confirming that the parameters governing the failure of reinforced concrete slabs subjected to blast are the tensile strength and softening behaviour after failure. Based on these results we have developed a constitutive model for concrete at high strain rates, which only takes into account the ultimate tensile strength. This model is based on the embedded Cohesive Crack Model with Strong Discontinuity Approach developed by Planas and Sancho, which has proved its ability in predicting the tensile fracture of plain concrete elements. The model has been modified for its implementation in the commercial explicit integration program LS-DYNA, using hexahedral finite elements and incorporating the dependence of the strain rate, to allow for its use in dynamic domain. The model is strictly local and does not require remeshing nor prior knowledge of the crack path. This constitutive model has been used to simulate two experimental campaigns, confirming the hypothesis that the failure of concrete elements subjected to explosions is governed by their tensile response, being of particular relevance the softening behavior of concrete.